Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Arch Dis Child ; 109(4): 267-274, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38296611

ABSTRACT

OBJECTIVE: To estimate the global prevalence of asymptomatic colonisation, and determine the associated risk factors, antibiotic resistance and genotypes of methicillin-resistant Staphylococcus aureus (MRSA) in the upper respiratory tract of young children. DESIGN: Four bibliometric databases were searched for publications between 2010 and 2022 according to the protocol registered in PROSPERO. Cross-sectional or cohort studies describing the prevalence of asymptomatic colonisation of S. aureus and MRSA in young children were included. Data extraction and analysis were carried out by two reviewers independently according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 statement. Pooled prevalence was estimated using a random effects model. SETTING AND STUDIES: We included studies where children without respiratory tract infection or Staphylococcal infection were recruited from the community, children's institutions (ie, nurseries, kindergartens, daycare centres and preschools) and healthcare centre visits and assessed for asymptomatic colonisation with S. aureus and MRSA. MAIN OUTCOME MEASURES: The pooled prevalence of asymptomatic colonisation of S. aureus and MRSA of young children globally. RESULTS: In this systematic review and meta-analysis of 21 416 young children, the pooled global prevalence of asymptomatic S. aureus colonisation was 25.1% (95% CI 21.4 to 28.8) and MRSA colonisation was 3.4% (95% CI 2.8 to 4.1). The clones of MRSA strains included healthcare-associated MRSA, community-associated MRSA and livestock-associated MRSA. CONCLUSION: This study provides evidence of increased MRSA colonisation globally among young children, underlining the critical role of asymptomatic carriers in MRSA transmission and the need for control measures. PROSPERO REGISTRATION NUMBER: CRD 42022328385.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Child , Child, Preschool , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus , Cross-Sectional Studies , Staphylococcal Infections/epidemiology , Nose , Prevalence
3.
Front Microbiol ; 13: 826487, 2022.
Article in English | MEDLINE | ID: mdl-35516426

ABSTRACT

Gut microbiota plays an important role in metabolic homeostasis. Previous studies demonstrated that ginsenoside Rb1 might improve obesity-induced metabolic disorders through regulating glucose and lipid metabolism in the liver and adipose tissues. Due to low bioavailability and enrichment in the intestinal tract of Rb1, we hypothesized that modulation of the gut microbiota might account for its pharmacological effects as well. Here, we show that oral administration of Rb1 significantly decreased serum LDL-c, TG, insulin, and insulin resistance index (HOMA-IR) in mice with a high-fat diet (HFD). Dynamic profiling of the gut microbiota showed that this metabolic improvement was accompanied by restoring of relative abundance of some key bacterial genera. In addition, the free fatty acids profiles in feces were significantly different between the HFD-fed mice with or without Rb1. The content of eight long-chain fatty acids (LCFAs) was significantly increased in mice with Rb1, which was positively correlated with the increase of Akkermansia and Parasuttereller, and negatively correlated with the decrease of Oscillibacter and Intestinimonas. Among these eight increased LCFAs, eicosapentaenoic acid (EPA), octadecenoic acids, and myristic acid were positively correlated with metabolic improvement. Furthermore, the colonic expression of the free fatty acid receptors 4 (Ffar4) gene was significantly upregulated after Rb1 treatment, in response to a notable increase of LCFA in feces. These findings suggested that Rb1 likely modulated the gut microbiota and intestinal free fatty acids profiles, which should be beneficial for the improvement of metabolic disorders in HFD-fed mice. This study provides a novel mechanism of Rb1 for the treatment of metabolic disorders induced by obesity, which may provide a therapeutic avenue for the development of new nutraceutical-based remedies for treating metabolic diseases, such as hyperlipidemia, insulin resistance, and type 2 diabetes.

4.
Front Pharmacol ; 13: 1068613, 2022.
Article in English | MEDLINE | ID: mdl-36733377

ABSTRACT

Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.

5.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008727

ABSTRACT

The invasion of skin tissue by Staphylococcus aureus is mediated by mechanisms that involve sequential breaching of the different stratified layers of the epidermis. Induction of cell death in keratinocytes is a measure of virulence and plays a crucial role in the infection progression. We established a 3D-organotypic keratinocyte-fibroblast co-culture model to evaluate whether a 3D-skin model is more effective in elucidating the differences in the induction of cell death by Methicillin-resistant Staphylococcus aureus (MRSA) than in comparison to 2D-HaCaT monolayers. We investigated the difference in adhesion, internalization, and the apoptotic index in HaCaT monolayers and our 3D-skin model using six strains of MRSA representing different clonal types, namely, ST8, ST30, ST59, ST22, ST45 and ST239. All the six strains exhibited internalization in HaCaT cells. Due to cell detachment, the invasion study was limited up to two and a half hours. TUNEL assay showed no significant difference in the cell death induced by the six MRSA strains in the HaCaT cells. Our 3D-skin model provided a better insight into the interactions between the MRSA strains and the human skin during the infection establishment as we could study the infection of MRSA in our skin model up to 48 h. Immunohistochemical staining together with TUNEL assay in the 3D-skin model showed co-localization of the bacteria with the apoptotic cells demonstrating the induction of apoptosis by the bacteria and revealed the variation in bacterial transmigration among the MRSA strains. The strain representing ST59 showed maximum internalization in HaCaT cells and the maximum cell death as measured by Apoptotic index in the 3D-skin model. Our results show that 3D-skin model might be more likely to imitate the physiological response of skin to MRSA infection than 2D-HaCaT monolayer keratinocyte cultures and will enhance our understanding of the difference in pathogenesis among different MRSA strains.


Subject(s)
Cell Culture Techniques , Fibroblasts/microbiology , Keratinocytes/microbiology , Methicillin-Resistant Staphylococcus aureus/physiology , Models, Biological , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Apoptosis , Cell Adhesion , Cell Death , Endocytosis , HaCaT Cells , Humans
6.
Nat Commun ; 11(1): 5372, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097724

ABSTRACT

Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.


Subject(s)
Aldehydes/chemistry , Amines/chemistry , Amino Acids/chemistry , Imines/chemistry , Catalysis , Indolequinones/chemistry , Mannich Bases/chemistry , Methylamines/chemistry , Molecular Structure , Stereoisomerism
7.
Front Pharmacol ; 11: 604, 2020.
Article in English | MEDLINE | ID: mdl-32435197

ABSTRACT

Gut dysbiosis contributes to the development and progression of chronic kidney disease (CKD) and its complications. However, the effect of drugs on the gut microbiota of CKD patients and its influence on treatment outcomes remains to be explored. Here, we assessed whether the response of gut microbiota to the traditional Chinese medicine Jian-Pi-Yi-Shen (JPYS) decoction differed from that to piperazine ferulate (PF), a kidney-targeted drug, by 16S rDNA sequencing, and whether the difference could be linked with drug-specific clinical outcomes. We showed that both JPYS and PF improved renal function, but only JPYS was able to restore the blood reticulocyte counting and serum calcium level in CKD rats. We also found that weighted UniFrac beta-diversity of the gut microbiome of the JPYS treated rats was significantly different from that of PF. Microbiome markers of drug-specific response were identified and subjected to correlation network analysis, together with clinical parameters and KEGG pathways. Among the microbiome markers of CKD, Corynebacterium was found to form a network hub that was closely correlated with the JPYS responder Enterococcus, suggesting a potential indirect impact of JPYS on Corynebacterium via interspecies interactions. We also identified two network hubs of the PF responder Blautia and the JPYS-only marker Coprococcus, which were connected with many genera and clinical parameters. They might serve as keystone taxa driving the response of gut microbiota to the drugs and influence host outcomes. Moreover, the JPYS-only marker Clostridium_XIVb was found to be connected to many pathways that are associated with CKD progression and might account for the improved outcomes in the JPYS treated rats. At last, the identified keystone markers of drug response were validated by qPCR for their differential abundance between CKD and the two drugs. Taken together, our study revealed that the responses of gut microbiota to JPYS were distinct from that to PF, and pinpointed drug-specific keystone microbiome markers closely correlated to clinical parameters, which could serve as candidate microbiome targets for further studies on their roles in medicating the drug efficacy of TCM in CKD.

8.
Genome Biol ; 20(1): 293, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31870407

ABSTRACT

Untangling the complex variations of microbiome associated with large-scale host phenotypes or environment types challenges the currently available analytic methods. Here, we present tmap, an integrative framework based on topological data analysis for population-scale microbiome stratification and association studies. The performance of tmap in detecting nonlinear patterns is validated by different scenarios of simulation, which clearly demonstrate its superiority over the most commonly used methods. Application of tmap to several population-scale microbiomes extensively demonstrates its strength in revealing microbiome-associated host or environmental features and in understanding the systematic interrelations among their association patterns. tmap is available at https://github.com/GPZ-Bioinfo/tmap.


Subject(s)
Microbiota , Software , Data Mining , Humans
9.
J Am Chem Soc ; 141(13): 5159-5163, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30896937

ABSTRACT

A chiral aldehyde is rationally combined with a Lewis acid and a transition metal for the first time to form a triple catalytic system. This cocatalytic system exhibits good catalytic activation and stereoselective-control abilities in the asymmetric α-allylation reaction of N-unprotected amino acid esters and allyl acetates. Optically active α,α-disubstituted α-amino acids (α-AAs) are generated in good yields (up to 87%) and enantioselectivities (up to 96% ee). Preliminary mechanism investigation indicates that the chiral aldehyde 3f acts both as an organocatalyst to activate the amino acid ester via the formation of a Schiff base, and as a ligand to facilitate the nucleophilic attack process by coordinating with π-allyl Pd(II) species.


Subject(s)
Aldehydes/chemistry , Allyl Compounds/chemistry , Amino Acids/chemical synthesis , Esters/chemical synthesis , Organometallic Compounds/chemistry , Transition Elements/chemistry , Alkylation , Amino Acids/chemistry , Catalysis , Esters/chemistry , Molecular Structure , Stereoisomerism
10.
Front Microbiol ; 10: 10, 2019.
Article in English | MEDLINE | ID: mdl-30728810

ABSTRACT

Group B Streptococcus (GBS; Streptococcus agalactiae) is a leading cause of sepsis in neonates and pregnant mothers worldwide. Whereas the hyper-virulent serogroup III clonal cluster 17 has been associated with neonatal disease and meningitis, serogroup III ST283 was recently implicated in invasive disease among non-pregnant adults in Asia. Here, through comparative genome analyses of invasive and non-invasive ST283 strains, we identified a truncated DNA-binding regulator of a two-component system in a non-invasive strain that was homologous to Bacillus subtilis bceR, encoding the bceRSAB response regulator, which was conserved among GBS strains. Using isogenic knockout and complementation mutants of the ST283 strain, we demonstrated that resistance to bacitracin and the human antimicrobial peptide cathelicidin LL-37 was reduced in the ΔbceR strain with MICs changing from 64 and 256 µg/ml to 0.25 and 64 µg/ml, respectively. Further, the ATP-binding cassette transporter was upregulated by sub-inhibitory concentrations of bacitracin in the wild-type strain. Upregulation of dltA in the wild-type strain was also observed and thought to explain the increased resistance to antimicrobial peptides. DltA, an enzyme involved in D-alanylation during the synthesis of wall teichoic acids, which mediates reduced antimicrobial susceptibility, was previously shown to be regulated by the bceR-type regulator in Staphylococcus aureus. In a murine infection model, we found that the ΔbceR mutation significantly reduced the mortality rate compared to that with the wild-type strain (p < 0.01). Moreover, this mutant was more susceptible to oxidative stress compared to the wild-type strain (p < 0.001) and was associated with reduced biofilm formation (p < 0.0001). Based on 2-DGE and mass spectrometry, we showed that downregulation of alkyl hydroperoxide reductase (AhpC), a Gls24 family stress protein, and alcohol dehydrogenase (Adh) in the ΔbceR strain might explain the attenuated virulence and compromised stress response. Together, we showed for the first time that the bceR regulator in GBS plays an important role in bacitracin and antimicrobial peptide resistance, virulence, survival under oxidative stress, and biofilm formation.

11.
J Am Chem Soc ; 140(30): 9774-9780, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29995401

ABSTRACT

Chiral aldehyde catalysis is uniquely suitable for the direct asymmetric α-functionalization of N-unprotected amino acids, because aldehydes can reversibly form imines. However, there have been few successful reports of these transformations. In fact, only chiral aldehyde catalyzed aldol reactions of amino acids and alkylation of 2-amino malonates have been reported with good chiral induction. Here, we report a novel type of chiral aldehyde catalyst based on face control of the enolate intermediates. The resulting chiral aldehyde is the first efficient nonpyridoxal-dependent catalyst that can promote the direct asymmetric α-functionalization of N-unprotected glycine esters. Possible transition states and the proton transfer process were investigated by density functional theory calculations.

12.
Medicine (Baltimore) ; 94(31): e1318, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26252318

ABSTRACT

Although compression therapy has been widely used after deep vein thrombosis (DVT), its efficacy in prevention of postthrombotic syndrome (PTS) remains disputable. We aimed to update the meta-analysis to comprehensively evaluate the effect of compression therapy on the prevention of PTS in adult patients after DVT.PubMed, Embase, and Cochrane library databases were systematically searched. Randomized controlled trials (RCTs) evaluating the preventive effect of compression therapy on PTS in adult patients after DVT were included. The primary outcome was the incidence of PTS. All meta-analyses were performed using random-effects models regardless of the heterogeneity. Subgroup and sensitivity analysis were also performed to examine the robustness of the pooled effects according to our predesigned plan. Potential publication bias was assessed.Eight RCTs with 1598 patients were included. Overall, compression therapy could significantly reduce the incidence of PTS (estimate 0.68, 95% confidence interval [CI] 0.52-0.90; P = 0.007). However, it was only associated with a reduction in the incidence of mild/moderate PTS (relative risk [RR] 0.66, 95% CI 0.46-0.93; P = 0.019) but not in the incidence of severe PTS (RR 0.64, 95% CI 0.27-1.50; P = 0.31). Additionally, compression therapy failed to reduce the incidence of recurrent venous thromboembolism (RR 0.91, 95% CI 0.65-1.27; P = 0.58), the incidence of ulceration (RR 0.74, 95% CI 0.36-1.53; P = 0.42), or mortality (RR 0.99, 95% CI 0.72-1.37; P = 0.96). No publication bias was observed.Current evidence still supports compression therapy to be a clinical practice for prophylaxis of PTS in adult patients after DVT. However, our findings should be cautiously interpreted because of heterogeneity and hence more large-scale and well-designed RCTs are still warranted.


Subject(s)
Compression Bandages , Postthrombotic Syndrome/prevention & control , Adult , Humans , Postthrombotic Syndrome/diagnosis , Postthrombotic Syndrome/etiology
13.
Crit Care ; 18(5): 517, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25212718

ABSTRACT

INTRODUCTION: Sodium bicarbonate (SBIC) was reported to be a promising approach to prevent cardiac surgery-associated acute kidney injury (CSA-AKI). However, the results remain controversial. We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of SBIC on the prevention of CSA-AKI in adult patients undergoing cardiac surgery. METHODS: PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of SBIC versus placebo on the prevention of CSA-AKI in adult patients undergoing cardiac surgery were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was the incidence of CSA-AKI. Meta-analysis was performed using random-effects models. RESULTS: Five RCTs involving 1079 patients were included in the meta-analysis. Overall, compared with placebo, SBIC was not associated with a reduced risk of CSA-AKI (relative risk [RR] 0.99; 95% confidence interval [CI] 0.78 to 1.24; P = 0.911). SBIC failed to alter the clinical outcomes of hospital length of stay (weighted mean difference [WMD] 0.23 days; 95%CI -0.88 to 1.33 days; P = 0.688), renal replacement therapy (RR 0.94; 95%CI 0.49 to 1.82; P = 0.861), hospital mortality (RR 1.37; 95%CI 0.46 to 4.13; P = 0.572), postoperative atrial fibrillation (RR 1.02; 95%CI 0.65 to 1.61; P = 0.915). However, SBIC was associated with significant increased risks in longer duration of ventilation (WMD 0.64 hours; 95%CI 0.16 to 1.11 hours; P = 0.008), longer ICU length of stay (WMD 2.06 days; 95%CI 0.54 to 3.58 days; P = 0.008), and increased incidence of alkalemia (RR 2.21; 95%CI 1.42 to 3.42; P <0.001). CONCLUSIONS: SBIC could not reduce the incidence of CSA-AKI. Contrarily, SBIC prolongs the duration of ventilation and ICU length of stay, and increases the risk of alkalemia. Thus, SBIC should not be recommended for the prevention of CSA-AKI and perioperative SBIC infusion should be administrated with caution.


Subject(s)
Acute Kidney Injury/prevention & control , Cardiac Surgical Procedures , Sodium Bicarbonate/therapeutic use , Adult , Atrial Fibrillation , Humans , Length of Stay , Postoperative Complications , Randomized Controlled Trials as Topic , Renal Replacement Therapy
14.
Fitoterapia ; 86: 92-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23425602

ABSTRACT

Staphylococcal pneumonia provoked by methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening infection in which α-toxin is an essential virulence factor. In this study, we investigate the influence of naringenin on α-toxin production and further assess its therapeutic performance in the treatment of staphylococcal pneumonia. Remarkably, the expression of α-toxin was significantly inhibited when the organism was treated with 16 µg/ml of naringenin. When studied in a mouse model of S. aureus pneumonia, naringenin could attenuate the symptoms of lung injury and inflammation in infected mice. These results suggest that naringenin is a promising agent for treatment of S. aureus infection.


Subject(s)
Bacterial Toxins/biosynthesis , Flavanones/therapeutic use , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Phytotherapy , Plant Extracts/therapeutic use , Pneumonia, Staphylococcal/drug therapy , Virulence Factors/biosynthesis , Animals , Cell Line , Citrus paradisi/chemistry , Female , Flavanones/pharmacology , Humans , Inflammation/drug therapy , Inflammation/microbiology , Solanum lycopersicum/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Mice , Mice, Inbred C57BL , Plant Extracts/pharmacology , Pneumonia, Staphylococcal/microbiology
15.
PLoS Comput Biol ; 9(1): e1002869, 2013.
Article in English | MEDLINE | ID: mdl-23349625

ABSTRACT

Alpha-hemolysin (α-HL) is a self-assembling, channel-forming toxin produced by most Staphylococcus aureus strains as a 33.2-kDa soluble monomer. Upon binding to a susceptible cell membrane, the monomer self-assembles to form a 232.4-kDa heptamer that ultimately causes host cell lysis and death. Consequently, α-HL plays a significant role in the pathogenesis of S. aureus infections, such as pneumonia, mastitis, keratitis and arthritis. In this paper, experimental studies show that oroxylin A (ORO), a natural compound without anti-S. aureus activity, can inhibit the hemolytic activity of α-HL. Molecular dynamics simulations, free energy calculations, and mutagenesis assays were performed to understand the formation of the α-HL-ORO complex. This combined approach revealed that the catalytic mechanism of inhibition involves the direct binding of ORO to α-HL, which blocks the conformational transition of the critical "Loop" region of the α-HL protein thereby inhibiting its hemolytic activity. This mechanism was confirmed by experimental data obtained from a deoxycholate-induced oligomerization assay. It was also found that, in a co-culture system with S. aureus and human alveolar epithelial (A549) cells, ORO could protect against α-HL-mediated injury. These findings indicate that ORO hinders the lytic activity of α-HL through a novel mechanism, which should facilitate the design of new and more effective antibacterial agents against S. aureus.


Subject(s)
Biopolymers/metabolism , Flavonoids/pharmacology , Hemolysin Proteins/metabolism , Hemolysis/drug effects , Binding Sites , Cell Line , Coculture Techniques , Hemolysin Proteins/chemistry , Humans , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation
16.
World J Microbiol Biotechnol ; 28(4): 1399-405, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22805920

ABSTRACT

In this study, fennel oil was isolated by hydrodistillation, and the chemical composition was determined by gas chromatography/mass spectral analysis. The antimicrobial activity of fennel oil against Staphylococcus aureus was evaluated by broth microdilution. A haemolysis assay, tumour necrosis factor (TNF) release assay, western blot, and real-time reverse transcription (RT)-PCR were applied to investigate the influence of fennel oil on the production of S. aureus virulence-related exoproteins. The data show that fennel oil, which contains a high level of trans-anethole, was active against S. aureus, with MICs ranging from 64 to 256 µg/ml. Furthermore, fennel oil, when used at subinhibitory concentrations, could dose-dependently decrease the expression of S. aureus exotoxins, including α-toxin, Staphylococcal enterotoxins (SEs) and toxic shock syndrome toxin 1 (TSST-1).


Subject(s)
Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Exotoxins/metabolism , Foeniculum/chemistry , Oils, Volatile/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Anti-Bacterial Agents/isolation & purification , Blotting, Western , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Hemolysis , Microbial Sensitivity Tests , Oils, Volatile/isolation & purification , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/metabolism
17.
J Microbiol Biotechnol ; 22(8): 1170-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22713997

ABSTRACT

In this study, we aimed to evaluate the effect of α- cyperone on S. aureus. We used a hemolysin test to examine the hemolytic activity in supernatants of S. aureus cultured with increasing concentrations of α- cyperone. In addition, we evaluated the production of α- hemolysin (Hla) by Western blotting. Real-time RT-PCR was performed to test the expression of hla (the gene encoding Hla) and agr (accessory gene regulator). Furthermore, we investigated the protective effect of α- cyperone on Hla-induced injury of A549 lung cells by live/ dead and cytotoxicity assays. We showed that in the presence of subinhibitory concentrations of α-cyperone, Hla production was markedly inhibited. Moreover, α- cyperone protected lung cells from Hla-induced injury. These findings indicate that α-cyperone is a promising inhibitor of Hla production by S. aureus and protects lung cells from this bacterium. Thus, α-cyperone may provide the basis for a new strategy to combat S. aureus pneumonia.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Toxins/antagonists & inhibitors , Gene Expression/drug effects , Hemolysin Proteins/antagonists & inhibitors , Staphylococcus aureus/drug effects , Virulence Factors/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Toxins/biosynthesis , Blotting, Western , Cell Line , Cell Survival , Epithelial Cells/microbiology , Hemolysin Proteins/biosynthesis , Hemolysis/drug effects , Humans , Real-Time Polymerase Chain Reaction , Staphylococcus aureus/pathogenicity , Trans-Activators/biosynthesis , Virulence Factors/biosynthesis
18.
J Infect Dis ; 206(2): 292-301, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22551812

ABSTRACT

α-Hemolysin (Hla) is a self-assembling, channel-forming toxin that is secreted by Staphylococcus aureus and is central to the pathogenesis of pulmonary, intraperitoneal, intramammary, and corneal infections in animal models. In this study, we report that baicalin (BAI), a natural compound that lacks anti-S. aureus activity, could inhibit the hemolytic activity of Hla. Using molecular dynamics simulations and mutagenesis assays, we further demonstrate that BAI binds to the binding sites of Y148, P151, and F153 in the Hla. This binding interaction inhibits heptamer formation. Furthermore, when added to S. aureus cultures, BAI prevents Hla-mediated human alveolar epithelial (A549) cell injury. In vivo studies further demonstrated that BAI protects mice from S. aureus pneumonia. These findings indicate that BAI hinders the cell lysis activity of Hla through a novel mechanism of interrupting the formation of heptamer, which may lead to the development of novel therapeutics that aim against S. aureus Hla.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Toxins/antagonists & inhibitors , Flavonoids/pharmacology , Hemolysin Proteins/antagonists & inhibitors , Pneumonia, Staphylococcal/prevention & control , Staphylococcus aureus/drug effects , Animals , Anti-Infective Agents/metabolism , Bacterial Toxins/metabolism , Binding Sites , Flavonoids/metabolism , Gene Expression Regulation, Bacterial/physiology , Hemolysin Proteins/metabolism , Hemolysis/drug effects , Male , Mice , Mice, Inbred C57BL , Protein Binding , Staphylococcus aureus/metabolism , Structure-Activity Relationship
20.
PLoS One ; 7(3): e33032, 2012.
Article in English | MEDLINE | ID: mdl-22427935

ABSTRACT

BACKGROUND: α-toxin is one of the major virulence factors secreted by most Staphylococcus aureus strains, which played a central role in the pathogenesis of S. aureus pneumonia. The aim of this study was to investigate the impact of capsaicin on the production of α-toxin by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain USA 300 and to further assess its performance in the treatment of CA-MRSA pneumonia in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS: The in vitro effects of capsaicin on α-toxin production by S. aureus USA 300 were determined using hemolysis, western blot, and real-time RT-PCR assays. The influence of capsaicin on the α-toxin-mediated injury of human alveolar epithelial cells was determined using viability and cytotoxicity assays. Mice were infected intranasally with S. aureus USA300; the in vivo protective effects of capsaicin against S. aureus pneumonia were assessed by monitoring the mortality, histopathological changes and cytokine levels. Low concentrations of capsaicin substantially decreased the production of α-toxin by S. aureus USA 300 without affecting the bacterial viability. The addition of capsaicin prevented α-toxin-mediated human alveolar cell (A549) injury in co-culture with S. aureus. Furthermore, the in vivo experiments indicated that capsaicin protected mice from CA-MRSA pneumonia caused by strain USA 300. CONCLUSIONS/SIGNIFICANCE: Capsaicin inhibits the production of α-toxin by CA-MRSA strain USA 300 in vitro and protects mice from CA-MRSA pneumonia in vivo. However, the results need further confirmation with other CA-MRSA lineages. This study supports the views of anti-virulence as a new antibacterial approach for chemotherapy.


Subject(s)
Bacterial Toxins/metabolism , Capsaicin/pharmacology , Community-Acquired Infections/prevention & control , Hemolysin Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Pneumonia, Staphylococcal/prevention & control , Animals , Blotting, Western , Capsaicin/pharmacokinetics , Cell Line , Community-Acquired Infections/pathology , Cytokines/immunology , DNA Primers/genetics , Hemolysis , Histological Techniques , Humans , Lung/pathology , Methicillin-Resistant Staphylococcus aureus/metabolism , Mice , Pneumonia, Staphylococcal/pathology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...