Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Natl Cancer Inst ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702830

ABSTRACT

BACKGROUND: TP53 alterations are common in certain pediatric cancers, making identification of putative germline variants through tumor genomic profiling crucial for patient management. METHODS: We analyzed TP53 alterations in 3123 tumors from 2788 pediatric patients sequenced using tumor-only or tumor-normal paired panels. Germline confirmatory testing was performed when indicated. Somatic and germline variants were classified following published guidelines. RESULTS: In 248 tumors from 222 patients, 284 Tier 1/2 TP53 sequence and small copy number variants were detected. Following germline classification, 73.9% of 142 unique variants were pathogenic/likely pathogenic (P/LP). Confirmatory testing on 118 patients revealed germline TP53 variants in 28 patients (23 P/LP and 5 uncertain significance), suggesting a minimum Li-Fraumeni syndrome (LFS) incidence of 0.8% (23/2788) in this cohort, 10.4% (23/222) in patients with TP53 variant-carrying tumors, and 19.5% (23/118) with available normal samples. About 25% (7/28) of patients with germline TP53 variants did not meet LFS diagnostic/testing criteria while 20.9% (28/134) with confirmed or inferred somatic origins did. TP53 biallelic inactivation occurred in 75% of germline carrier tumors and was also prevalent in other groups, causing an elevated tumor-observed variant allelic fraction (VAF). However, somatic evidence including low VAF correctly identified only 27.8% (25/90) of patients with confirmed somatic TP53 variants. CONCLUSION: The high incidence and variable phenotype of LFS in this cohort highlights the importance of assessing germline status of TP53 variants identified in all pediatric tumors. Without clear somatic evidence, distinguishing somatic from germline origins is challenging. Classifying germline and somatic variants should follow appropriate guidelines.

2.
Genes Chromosomes Cancer ; 63(4): e23233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607297

ABSTRACT

Medulloblastomas, the most common malignant pediatric brain tumors, can be classified into the wingless, sonic hedgehog (SHH), group 3, and group 4 subgroups. Among them, the SHH subgroup with the TP53 mutation and group 3 generally present with the worst patient outcomes due to their high rates of recurrence and metastasis. A novel and effective treatment for refractory medulloblastomas is urgently needed. To date, the tumor microenvironment (TME) has been shown to influence tumor growth, recurrence, and metastasis through immunosuppression, angiogenesis, and chronic inflammation. Treatments targeting TME components have emerged as promising approaches to the treatment of solid tumors. In this review, we summarize progress in research on medulloblastoma microenvironment components and their interactions. We also discuss challenges and future research directions for TME-targeting medulloblastoma therapy.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Tumor Microenvironment/genetics , Cerebellar Neoplasms/genetics
3.
Int Immunopharmacol ; 133: 112047, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38631221

ABSTRACT

BACKGROUND: Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS: A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS: This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION: The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/mortality , Glioma/immunology , Glioma/metabolism , Prognosis , Brain Neoplasms/mortality , Brain Neoplasms/immunology , Biomarkers, Tumor/metabolism , Chemokines/metabolism , Receptors, Chemokine/metabolism , Receptors, CXCR4/metabolism
6.
Am J Med Genet A ; 194(5): e63530, 2024 May.
Article in English | MEDLINE | ID: mdl-38197511

ABSTRACT

MPZL2-related hearing loss is a rare form of autosomal recessive hearing loss characterized by progressive, mild sloping to severe sensorineural hearing loss. Thirty-five previously reported patients had biallelic truncating variants in MPZL2, with the exception of one patient with a missense variant of uncertain significance and a truncating variant. Here, we describe the clinical characteristics and genotypes of five patients from four families with confirmed MPZL2-related hearing loss. A rare missense likely pathogenic variant [NM_005797.4(MPZL2):c.280C>T,p.(Arg94Trp)] located in exon 3 was confirmed to be in trans with a recurrent pathogenic truncating variant that segregated with hearing loss in three of the patients from two unrelated families. This is the first recurrent likely pathogenic missense variant identified in MPZL2. Apparently milder or later-onset hearing loss associated with rare missense variants in MPZL2 indicates that some missense variants in this gene may cause a milder phenotype than that resulting from homozygous or compound heterozygous truncating variants. This study, along with the identification of truncating loss of function and missense MPZL2 variants in several diverse populations, suggests that MPZL2-related hearing loss may be more common than previously appreciated and demonstrates the need for MPZL2 inclusion in hearing loss testing panels.


Subject(s)
Cell Adhesion Molecules , Hearing Loss, Sensorineural , Humans , Cell Adhesion Molecules/genetics , Deafness/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Mutation, Missense/genetics , Pedigree , Phenotype
7.
Genet Med ; 26(3): 101036, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054408

ABSTRACT

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Subject(s)
Genetic Variation , Humans , Alleles , Genetic Variation/genetics , Penetrance , Gene Frequency
8.
J Mol Diagn ; 26(3): 191-201, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103590

ABSTRACT

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Hemoglobinuria, Paroxysmal , Humans , Child , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Congenital Bone Marrow Failure Syndromes , DNA Copy Number Variations/genetics , Reproducibility of Results , Hemoglobinuria, Paroxysmal/diagnosis , Hemoglobinuria, Paroxysmal/genetics , High-Throughput Nucleotide Sequencing/methods , Nucleotides
10.
Oncol Res ; 31(6): 929-936, 2023.
Article in English | MEDLINE | ID: mdl-37744277

ABSTRACT

Non-small cell lung cancer (NSCLC) is a highly lethal cancer, and better treatments are urgently needed. Many studies have implicated circular RNAs (circRNAs) in the progression of multiple malignant tumors. Nonetheless, the functions of circRNAs in NSCLC remain unclear. To study new targets for the treatment of NSCLC, circRNA expression profiling was performed on NSCLC tissues and para-carcinoma nonmalignant tissues. RNA was isolated and used for circRNA sequencing. Biological studies were performed in vitro and in vivo to determine the functions of circRNAs in NSCLC, including their functions in cell proliferation and migration. How circRNAs function in NSCLC was explored to clarify the underlying regulatory mechanisms. We found that circUCP2 was upregulated in NSCLC tissues compared with neighboring nonmalignant tissues. circUCP2 promoted the proliferation and metastasis of NSCLC cells. circUCP2 promoted NSCLC progression by sponging miR-149 and upregulating UCP2. The circUCP2/miR-149/UCP2 axis accelerates the progression of NSCLC, and circUCP2 may therefore be a novel diagnostic biomarker for the progression of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/genetics , RNA, Circular/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Uncoupling Protein 2/genetics
11.
J Pediatr ; 262: 113620, 2023 11.
Article in English | MEDLINE | ID: mdl-37473993

ABSTRACT

OBJECTIVE: To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands. STUDY DESIGN: This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands. RESULTS: The overall diagnostic yield was 44% (209/474) with causative variants involving 41 genes. While the diagnostic yield was high in the probands with congenital, bilateral, and severe HL, it was low in those with unilateral, noncongenital, or mild HL; cochlear nerve deficiency; preterm birth; neonatal intensive care unit admittance; certain ancestry; and developmental delay. Follow-up studies on 49 probands with initially inconclusive CGPT results changed the diagnostic status to likely positive or negative outcomes in 39 of them (80%). Reflex to exome sequencing on 128 undiagnosed probands by CGPT revealed diagnostic findings in 8 individuals, 5 of whom had developmental delays. The remaining 255 probands were undiagnosed, with 173 (173/255) having only a single variant in the gene(s) associated with autosomal recessive HL and 28% (48/173) having a matched phenotype. CONCLUSION: CGPT efficiently identifies the genetic etiologies of HL in children. CGPT-undiagnosed probands may benefit from follow-up studies or expanded testing.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Premature Birth , Female , Humans , Child , Infant, Newborn , Retrospective Studies , Premature Birth/genetics , Hearing Loss/diagnosis , Hearing Loss/genetics , Deafness/genetics , Phenotype , Hearing Loss, Sensorineural/diagnosis , Genetic Testing/methods
13.
Hum Mutat ; 43(11): 1531-1544, 2022 11.
Article in English | MEDLINE | ID: mdl-36086952

ABSTRACT

Long-read sequencing (LRS) has been around for more than a decade, but widespread adoption of the technology has been slow due to the perceived high error rates and high sequencing cost. This is changing due to the recent advancements to produce highly accurate sequences and the reducing costs. LRS promises significant improvement over short read sequencing in four major areas: (1) better detection of structural variation (2) better resolution of highly repetitive or nonunique regions (3) accurate long-range haplotype phasing and (4) the detection of base modifications natively from the sequencing data. Several successful applications of LRS have demonstrated its ability to resolve molecular diagnoses where short-read sequencing fails to identify a cause. However, the argument for increased diagnostic yield from LRS remains to be validated. Larger cohort studies may be required to establish the realistic boundaries of LRS's clinical utility and analytical validity, as well as the development of standards for clinical applications. We discuss the limitations of the current standard of care, and contrast with the applications and advantages of two major LRS platforms, PacBio and Oxford Nanopore, for molecular diagnostics of constitutional disorders, and present a critical argument about the potential of LRS in diagnostic settings.


Subject(s)
High-Throughput Nucleotide Sequencing , Pathology, Molecular , Humans , Sequence Analysis, DNA
14.
Biochem Biophys Res Commun ; 620: 21-28, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35777130

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) mobilize and migrate from bone marrow to peripheral tissues or immune organs, which is associated with poor prognosis in sepsis. Intervention of MDSCs might be a potential target for the effective treatment of sepsis. In the present study, we demonstrated that IL-1R1 blockade with either recombinant human IL-1R antagonist Anakinra or IL-1R1 deficiency had a protective effect on the liver injury in septic mice. The possible mechanism was that Anakinra treatment and IL-1R1 knockout inhibited the migration of MDSCs to the liver in sepsis, thus attenuating the immune suppression of MDSCs on effector T cells characterized with the decrease in proportion of CD4+ and CD8+ T cells. Furthermore, the switch from pro-inflammatory M1 macrophage to anti-inflammatory M2 phenotype and the ability of bacterial clearance in the liver of septic mice were enhanced obviously by Anakinra and IL-1R1 deficiency, which contributes to the attenuated liver injury. Taken together, these findings provide new ideas for revealing the relationship between IL-1R1 and MDSCs in sepsis, thereby providing a potentially effective target for ameliorating septic liver injury.


Subject(s)
Myeloid-Derived Suppressor Cells , Receptors, Interleukin-1 Type I/metabolism , Sepsis , Animals , CD8-Positive T-Lymphocytes , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Liver , Mice , Mice, Inbred C57BL , Sepsis/drug therapy
15.
Front Endocrinol (Lausanne) ; 13: 865913, 2022.
Article in English | MEDLINE | ID: mdl-35865311

ABSTRACT

In this study, atypical choroid plexus papilloma was treated with high-dose rapamycin for 17 days preoperatively in an infant. Rapamycin significantly reduced the blood supply to the tumor while reducing the tumor volume, and most of the tumor was resected successfully. However, the infant developed hyperglycemia related to the rapamycin dose, which was effectively controlled by adjusting the dose and applying insulin.


Subject(s)
Choroid Plexus Neoplasms , Glioma , Hyperglycemia , Papilloma, Choroid Plexus , Choroid Plexus Neoplasms/pathology , Choroid Plexus Neoplasms/therapy , Humans , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Infant , Papilloma, Choroid Plexus/pathology , Papilloma, Choroid Plexus/surgery , Sirolimus/adverse effects
16.
Acta Neuropathol Commun ; 10(1): 102, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35836290

ABSTRACT

CIC-rearranged sarcomas are newly defined undifferentiated soft tissue tumors with CIC-associated fusions, and dismal prognosis. CIC fusions activate PEA3 family genes, ETV1/4/5, leading to tumorigenesis and progression. We report two high-grade CNS sarcomas of unclear histological diagnosis and one disseminated tumor of unknown origin with novel fusions and similar gene-expression/methylation patterns without CIC rearrangement. All three patients were infants with aggressive diseases, and two experienced rapid disease deterioration and death. Whole-transcriptome sequencing identified an ATXN1-NUTM2A fusion in the two CNS tumors and an ATXN1L-NUTM2A fusion in case 3. ETV1/4/5 and WT1 overexpression were observed in all three cases. Methylation analyses predicted CIC-rearranged sarcoma for all cases. Retrospective IHC staining on case 2 demonstrated ETV4 and WT1 overexpression. ATXN1 and ATXN1L interact with CIC forming a transcription repressor complex. We propose that ATXN1/ATXN1L-associated fusions disrupt their interaction with CIC and decrease the transcription repressor complex, leading to downstream PEA3 family gene overexpression. These three cases with novel ATXN1/ATXN1L-associated fusions and features of CIC-rearranged sarcomas may further expand the scope of "CIC-rearranged" sarcomas to include non-CIC rearrangements. Additional cases are needed to demonstrate if ATXN1/ATXN1L-NUTM2A fusions are associated with younger age and more aggressive diseases.


Subject(s)
Sarcoma, Small Cell , Sarcoma , Soft Tissue Neoplasms , Ataxin-1/genetics , Biomarkers, Tumor/genetics , Gene Expression , Humans , Infant , Methylation , Oncogene Proteins, Fusion/genetics , Repressor Proteins/genetics , Retrospective Studies , Sarcoma/genetics , Sarcoma/pathology , Sarcoma, Small Cell/diagnosis , Sarcoma, Small Cell/genetics , Sarcoma, Small Cell/pathology , Soft Tissue Neoplasms/genetics , Transcription Factors/genetics
17.
Hum Mutat ; 43(12): 1837-1843, 2022 12.
Article in English | MEDLINE | ID: mdl-35870179

ABSTRACT

Synonymous variants have been shown to alter the correct splicing of pre-mRNAs and generate disease-causing transcripts. These variants are not an uncommon etiology of genetic disease; however, they are frequently overlooked during genetic testing in the absence of functional and clinical data. Here, we describe the occurrence of a synonymous variant [NM_005422.4 (TECTA):c.327C>T, p.(Gly109=)] in seven individuals with hearing loss from six unrelated families. The variant is not located near exonic/intronic boundaries but is predicted to impact splicing by activating a cryptic splicing donor site in exon 4 of TECTA. In vitro minigene assays show that the variant disrupts the reading frame of the canonical transcript, which is predicted to cause a premature termination codon 48 amino acids downstream of the variant, leading to nonsense-mediated decay. The variant is present in population databases, predominantly in Latinos of African ancestry, but is rare in other ethnic groups. Our findings suggest that this synonymous variant is likely pathogenic for TECTA-associated autosomal recessive hearing loss and seems to have arisen as a founder variant in this specific Latino subpopulation. This study demonstrates that synonymous variants need careful splicing assessment and support from additional testing methodologies to determine their clinical impact.


Subject(s)
Deafness , Hearing Loss , Humans , RNA Splice Sites , RNA Splicing/genetics , Hearing Loss/genetics , Deafness/genetics , Exons/genetics , Extracellular Matrix Proteins/genetics , GPI-Linked Proteins/genetics
18.
Article in English | MEDLINE | ID: mdl-35232817

ABSTRACT

Li-Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2-6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.


Subject(s)
Adrenal Cortex Neoplasms , Breast Neoplasms , Li-Fraumeni Syndrome , Tumor Suppressor Protein p53 , Adult , Breast Neoplasms/genetics , Child , Female , Gene Duplication/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Humans , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics
19.
Biomed Pharmacother ; 148: 112728, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35220030

ABSTRACT

Teriparatide is a commonly used drug indicated for the treatment of osteoporosis in postmenopausal women. Teriparatide can also upregulate Ang-1 expression through the AC/PKA signaling pathway to promote angiogenesis. At present, promoting angiogenesis is a promising but unrealized strategy for the treatment of ischemic cerebral infarction. However, there are few studies on the application of teriparatide in the treatment of cerebral infarction. We used teriparatide to treat ischemic cerebral infarction in rats and obtained three major findings. First, teriparatide can promote angiogenesis, reduce cerebral infarct size, and increase cerebral perfusion by upregulating Ang-1 expression. Second, teriparatide can promote the expression of HO1, SOD2 and inhibit the production of pro-inflammatory cytokines IL-1ß, IL-6 by upregulating Nrf2 expression. Third, we further found that teriparatide can mitigate blood-brain barrier disruption and brain edema by downregulating the expressions of MMP9, Ang-2 and AQP4. Our results indicate that teriparatide is neuroprotective through multiple mechanisms of action that include promoting angiogenesis, inhibiting oxidative stress and neuroinflammation, protecting blood-brain barrier, and reducing brain edema.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Blood-Brain Barrier , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Female , Humans , Infarction, Middle Cerebral Artery/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction , Teriparatide/pharmacology
20.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Article in English | MEDLINE | ID: mdl-35065284

ABSTRACT

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Subject(s)
Exome , Pathology, Molecular , Child , Exome/genetics , Humans , Mutation , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...