Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 47(4): 1023-1040, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984059

ABSTRACT

Drought stress poses a persistent threat to field crops and significantly limits global agricultural productivity. Plants employ ubiquitin-dependent degradation as a crucial post-translational regulatory mechanism to swiftly adapt to changing environmental conditions. JUL1 is a RING-type E3 ligase related to drought stress in Arabidopsis. In this study, we explored the function of BnaJUL1 (a homologous gene of JUL1 in Brassica napus) and discovered a novel gene BnaTBCC1 participating in drought tolerance. First, we utilised BnaJUL1-cri materials through the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 system. Second, we confirmed that BnaJUL1 regulated drought tolerance through the drought tolerance assay and transcriptome analysis. Then, we identified a series of proteins interacting with BnaJUL1 through yeast library screening, including BnaTBCC1 (a tubulin binding cofactor C domain-containing protein); whose homologous gene TBCC1 knockdown mutants (tbcc1-1) exhibited ABA-sensitive germination in Arabidopsis, we then confirmed the involvement of BnaTBCC1 in drought tolerance in both Arabidopsis and Brassica. Finally, we established that BnaJUL1 could ubiquitinate and degrade BnaTBCC1 to regulate drought tolerance. Consequently, our study unveils BnaJUL1 as a novel regulator that ubiquitinates and degrades BnaTBCC1 to modulate drought tolerance and provided desirable germplasm for further breeding of drought tolerance in rapeseed.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassica napus , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Drought Resistance , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Ubiquitin/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Abscisic Acid/metabolism
2.
Theor Appl Genet ; 134(8): 2653-2669, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34002254

ABSTRACT

KEY MESSAGE: A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.


Subject(s)
Brassica napus/growth & development , Chromosome Deletion , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Seeds/growth & development , Brassica napus/genetics , Haplotypes , Phenotype , Plant Breeding , Plant Proteins/genetics , Quantitative Trait Loci , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...