Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
3.
Acta Pharm Sin B ; 14(4): 1661-1676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572101

ABSTRACT

Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by changes in kidney structure and function. The natural product rosmarinic acid (RA) has demonstrated therapeutic effects, including anti-inflammation and anti-oxidative-stress, in renal damage or dysfunction. In this study, we characterized the heterogeneity of the cellular response in kidneys to DN-induced injury and RA treatment at single cell levels. Our results demonstrated that RA significantly alleviated renal tubular epithelial injury, particularly in the proximal tubular S1 segment and on glomerular epithelial cells known as podocytes, while attenuating the inflammatory response of macrophages, oxidative stress, and cytotoxicity of natural killer cells. These findings provide a comprehensive understanding of the mechanisms by which RA alleviates kidney damage, oxidative stress, and inflammation, offering valuable guidance for the clinical application of RA in the treatment of DN.

4.
Chem Sci ; 15(12): 4313-4321, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516082

ABSTRACT

Identifying the cellular targets of bioactive small molecules within tissues has been a major concern in drug discovery and chemical biology research. Compared to cell line models, tissues consist of multiple cell types and complicated microenvironments. Therefore, elucidating the distribution and heterogeneity of targets across various cells in tissues would enhance the mechanistic understanding of drug or toxin action in real-life scenarios. Here, we present a novel multi-omics integration pipeline called Single-cell TargEt Profiling (STEP) that enables the global profiling of protein targets in mammalian tissues with single-cell resolution. This pipeline integrates single-cell transcriptome datasets with tissue-level protein target profiling using chemoproteomics. Taking well-established classic drugs such as aspirin, aristolochic acid, and cisplatin as examples, we confirmed the specificity and precision of cellular drug-target profiles and their associated molecular pathways in tissues using the STEP analysis. Our findings provide more informative insights into the action modes of bioactive molecules compared to in vitro models. Collectively, STEP represents a novel strategy for profiling cellular-specific targets and functional processes with unprecedented resolution.

5.
Adv Biol (Weinh) ; 8(3): e2300542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408269

ABSTRACT

Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.


Subject(s)
Cytokines , Diterpenes, Kaurane , Sepsis , Mice , Animals , Cytokines/genetics , Cytokines/pharmacology , Sepsis/complications , Sepsis/drug therapy , Sepsis/genetics , Liver , Gene Expression Profiling
6.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401519

ABSTRACT

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycyrrhetinic Acid , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Glycyrrhetinic Acid/pharmacology , Lung Neoplasms/pathology , Caspase 3 , Peroxiredoxin VI/therapeutic use , Cell Line, Tumor , Apoptosis
7.
RSC Adv ; 14(3): 1602-1611, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179093

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is widely used because of its excellent performance. We report the synthesis of two PEDOT:PSS dispersions. The two dispersions differ by the addition of additional protonic acid in the oxidative polymerization system. Although there are examples of the introduction of acids into the polymerization system, the effects of acid on the structure and properties of these materials, in particular their mechanisms of action, have not been elucidated. We describe the chemical structure and molecular weight of two PEDOT polymers using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis-NIR spectroscopy, and density functional theory calculations. The carrier concentration, carrier mobility, and surface morphology of the composites are characterized by UV-vis-NIR spectroscopy, electron spin resonance, Raman spectra, Hall effect measurements, and atomic force microscopy. The crystallinity of PEDOT:PSS was measured by X-ray diffraction patterns. We show that the addition of a proper amount of protonic acid to the oxidative polymerization system can effectively reduce the formation of the terminal carbonyl group of PEDOT chains, which is conducive to the growth of polymer chains, and further improve the carrier concentration, which leads to an improvement of conductivity. Our results highlight the optimization of the chemical structure of PEDOT in order to increase its molecular weight and ultimately its conductivity.

8.
Cell Commun Signal ; 22(1): 75, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287374

ABSTRACT

BACKGROUND: Parkinson's disease (PD), a chronic and severe neurodegenerative disease, is pathologically characterized by the selective loss of nigrostriatal dopaminergic neurons. Dopamine (DA), the neurotransmitter produced by dopaminergic neurons, and its metabolites can covalently modify proteins, and dysregulation of this process has been implicated in neuronal loss in PD. However, much remains unknown about the protein targets. METHODS: In the present work, we designed and synthesized a dopamine probe (DA-P) to screen and identify the potential protein targets of DA using activity-based protein profiling (ABPP) technology in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In situ pull-down assays, cellular thermal shift assays (CETSAs) and immunofluorescence were performed to confirm the DA modifications on these hits. To investigate the effects of DA modifications, we measured the enzymatic activities of these target proteins, evaluated glycolytic stress and mitochondrial respiration by Seahorse tests, and systematically analyzed the changes in metabolites with unbiased LC-MS/MS-based non-targeted metabolomics profiling. RESULTS: We successfully identified three glycolytic proteins, aldolase A, α-enolase and pyruvate kinase M2 (PKM2), as the binding partners of DA. DA bound to Glu166 of α-enolase, Cys49 and Cys424 of PKM2, and Lys230 of aldolase A, inhibiting the enzymatic activities of α-enolase and PKM2 and thereby impairing ATP synthesis, resulting in mitochondrial dysfunction. CONCLUSIONS: Recent research has revealed that enhancing glycolysis can offer protection against PD. The present study identified that the glycolytic pathway is vulnerable to disruption by DA, suggesting a promising avenue for potential therapeutic interventions. Safeguarding glycolysis against DA-related disruption could be a potential therapeutic intervention for PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/metabolism , Dopamine/therapeutic use , Fructose-Bisphosphate Aldolase/therapeutic use , Chromatography, Liquid , Tandem Mass Spectrometry , Proteins , Phosphopyruvate Hydratase
9.
Cancer Lett ; 587: 216621, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38242198

ABSTRACT

Hepatocellular carcinoma (HCC) is among the deadliest malignancies worldwide and still a pressing clinical problem. Icaritin, a natural compound obtained from the Epimedium genus plant, has garnered significant attention as a potential therapeutic drug for HCC therapies. Mitophagy plays a crucial role in mitochondrial quality control through efficiently eliminating damaged mitochondria. However, the specific mechanisms of the interplay between mitophagy and apoptosis in HCC is still unclear. We aimed to explore the cross-talk between icaritin-induced mitophagy and apoptosis in HCC cells and investigate its potential mechanisms. Firstly, we confirmed that icaritin inhibits proliferation and migration while inducing mitochondrial damage and reactive oxygen species (ROS) production in HCC cells. Secondly, based on proteomics analysis, we discovered that icaritin inhibits the growth of tumor cells and disrupts their mitochondrial homeostasis through the regulation of both mitophagy and apoptosis. Thirdly, icaritin causes mitophagy mediated by PINK1-Parkin signaling via regulating feedforward loop. Furthermore, knockdown of PINK1/Parkin leads to inhibition of mitophagy, which promotes cell death induced by icaritin in HCC cells. Finally, autophagy/mitophagy inhibitors remarkably enhance icaritin-induced cell death and anticancer efficacy. Collectively, our findings reveal that icaritin suppresses growth, proliferation and migration of HCC cell through induction of mitophagy and apoptosis, while inhibition of mitophagy significantly increased the anti-cancer and pro-apoptotic effects of icaritin, indicating that targeting autophagy or mitophagy is a novel approach to overcome drug resistance and enhance anticancer therapies.


Subject(s)
Carcinoma, Hepatocellular , Flavonoids , Liver Neoplasms , Humans , Mitophagy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/pathology , Autophagy , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
10.
Free Radic Biol Med ; 210: 367-377, 2024 01.
Article in English | MEDLINE | ID: mdl-38052276

ABSTRACT

The pathogenesis of Autoimmune Hepatitis (AIH) is closely associated with perturbations in iron ion metabolism, during which Stimulator of Interferon Genes (STING) plays an important role. However, the precise regulatory mechanism remains elusive. In this study, we investigated the relationship between iron dysregulation and STING activation in Concanavalin A (ConA)-induced AIH liver injury. STING knockout (STING-/-) mice and AAV (Adeno-Associated virus)-Sting1-RNAi-treated mice were involved and subjected in AIH. We observed that increased iron dysregulation was linked with STING activation, but this effect was effectively reversed by the administration of iron chelating agent Desferoxamine (DFO) and the antioxidant Ferrostatin-1 (Fer-1). Notably, the iron transport protein Transferrin (TF) and Transferrin Receptor (TfR) exhibited significant accumulation in AIH along with upregulated expression of ferritin protein. Additionally, the deficiency of STING reduced hepatic iron accumulation, mitigated oxidative stress, and attenuated macrophage activation during ConA treatment. Furthermore, liver-specific knockdown of STING using AAV-Sting1-RNAi significantly ameliorated liver iron dysregulation and oxidative stress response induced by Kupffer cells (KCs). KC-derived STING exacerbates liver damage severity in AIH through promoting disturbances in hepatic iron ion metabolism as well as oxidative stress response. These findings provide valuable insights into the pathogenesis of AIH and may pave the way for potential therapeutic strategies targeting STING and iron metabolism in the future.


Subject(s)
Hepatitis, Autoimmune , Liver , Animals , Mice , Concanavalin A/toxicity , Concanavalin A/metabolism , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/pathology , Inflammation/metabolism , Kupffer Cells/metabolism , Liver/pathology
11.
Adv Biol (Weinh) ; 8(2): e2300538, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38105424

ABSTRACT

Chronic myelogenous leukemia (CML) that is resistant to tyrosine kinase inhibitors is one of the deadliest hematologic malignancies, and the T315I mutation in the breakpoint cluster region-Abelson (BCR-ABL) kinase domain is the most prominent point mutation responsible for imatinib resistance in CML. Glaucocalyxin A (GLA), a natural bioactive product derived from the Rabdosia rubescens plant, has strong anticancer activity. In this study, the effect and molecular mechanism of GLA on imatinib-sensitive and imatinib-resistant CML cells harboring T315I mutation via a combined deconvolution strategy of chemoproteomics and label-free proteomics is investigated. The data demonstrated that GLA restrains proliferation and induces mitochondria-dependent apoptosis in both imatinib-sensitive and resistant CML cells. GLA covalently binds to the cysteine residues of mitochondrial voltage-dependent anion channels (VDACs), resulting in mitochondrial damage and overflow of intracellular apoptotic factors, eventually leading to apoptosis. In addition, the combination of GLA with elastin, a mitochondrial channel VDAC2/3 inhibitor, enhances mitochondria-dependent apoptosis in imatinib-sensitive and -resistant CML cells, representing a promising therapeutic approach for leukemia treatment. Taken together, the results show that GLA induces mitochondria-dependent apoptosis via covalently targeting VDACs in CML cells. GLA may thus be a candidate compound for the treatment of leukemia.


Subject(s)
Diterpenes, Kaurane , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Drug Resistance, Neoplasm/genetics , Cell Proliferation , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Apoptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mitochondria/metabolism , Mitochondria/pathology , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/therapeutic use
12.
Asian J Pharm Sci ; 18(6): 100874, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38149060

ABSTRACT

Hepatocellular carcinoma (HCC) is one of most common and deadliest malignancies. Celastrol (Cel), a natural product derived from the Tripterygium wilfordii plant, has been extensively researched for its potential effectiveness in fighting cancer. However, its clinical application has been hindered by the unclear mechanism of action. Here, we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and anti-tumor capacity by developing a Cel-based liposomes in HCC. We demonstrated that Cel selectively targets the voltage-dependent anion channel 2 (VDAC2). Cel directly binds to the cysteine residues of VDAC2, and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore (mPTP) function. We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells. Moreover, coencapsulation of Cel into alkyl glucoside-modified liposomes (AGCL) improved its antitumor efficacy and minimized its side effects. AGCL has been shown to effectively suppress the proliferation of tumor cells. In a xenograft nude mice experiment, AGCL significantly inhibited tumor growth and promoted apoptosis. Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death, while the Cel liposomes enhance its targetability and reduces side effects. Overall, Cel shows promise as a therapeutic agent for HCC.

13.
MedComm (2020) ; 4(5): e395, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37808269

ABSTRACT

Sepsis is a difficult-to-treat systemic condition in which liver dysfunction acts as both regulator and target. However, the dynamic response of diverse intrahepatic cells to sepsis remains poorly characterized. Capsaicin (CAP), a multifunctional chemical derived from chilli peppers, has recently been shown to potentially possess anti-inflammatory effects, which is also one of the main approaches for drug discovery against sepsis. We performed single-cell RNA transcriptome sequencing on 86,830 intrahepatic cells isolated from normal mice, cecal ligation and puncture-induced sepsis model mice and CAP-treated mice. The transcriptional atlas of these cells revealed dynamic changes in hepatocytes, macrophages, neutrophils, and endothelial cells in response to sepsis. Among the extensive crosstalk across these major subtypes, KC_Cxcl10 shared strong potential interaction with other cells when responding to sepsis. CAP mitigated the severity of inflammation by partly reversing these pathophysiologic processes. Specific cell subpopulations in the liver act collectively to escalate inflammation, ultimately causing liver dysfunction. CAP displays its health-promoting function by ameliorating liver dysfunction induced by sepsis. Our study provides valuable insights into the pathophysiology of sepsis and suggestions for future therapeutic gain.

14.
BMC Public Health ; 23(1): 1874, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759167

ABSTRACT

BACKGROUND: Recently, attention has focused on the impact of global climate change on infectious diseases. Storm flooding is an extreme weather phenomenon that not only impacts the health of the environment but also worsens the spread of pathogens. This poses a significant challenge to public health security. However, there is still a lack of research on how different levels of storm flooding affect susceptible enteric infectious diseases over time. METHODS: Data on enteric infectious diseases, storm flooding events, and meteorology were collected for Changsha, Hunan Province, between 2016 and 2020. The Wilcoxon Rank Sum Test was used to identify the enteric infectious diseases that are susceptible to storm flooding. Then, the lagged effects of different levels of storm flooding on susceptible enteric infectious diseases were analyzed using a distributed lag nonlinear model. RESULTS: There were eleven storm flooding events in Changsha from 2016 to 2020, concentrated in June and July. 37,882 cases of enteric infectious diseases were reported. During non-flooding days, the daily incidence rates of typhoid/paratyphoid and bacillary dysentery were 0.3/100,000 and 0.1/100,000, respectively. During flooding days, the corresponding rates increased to 2.0/100,000 and 0.8/100,000, respectively. The incidence rates of both diseases showed statistically significant differences between non-flooding and flooding days. Correlation analysis shows that the best lags for typhoid/paratyphoid and bacillary dysentery relative to storm flooding events may be 1 and 3 days. The results of the distributed lag nonlinear model showed that typhoid/paratyphoid had the highest cumulative RR values of 2.86 (95% CI: 1.71-4.76) and 8.16 (95% CI: 2.93-22.67) after 4 days of general flooding and heavy flooding, respectively; and bacillary dysentery had the highest cumulative RR values of 1.82 (95% CI: 1.40-2.35) and 3.31 (95% CI: 1.97-5.55) after 5 days of general flooding and heavy flooding, respectively. CONCLUSIONS: Typhoid/paratyphoid and bacillary dysentery are sensitive enteric infectious diseases related to storm flooding in Changsha. There is a lagging effect of storm flooding on the onset of typhoid/paratyphoid and bacillary dysentery, with the best lagging periods being days 1 and 3, respectively. The cumulative risk of typhoid/paratyphoid and bacillary dysentery was highest at 4/5 days lag, respectively. The higher of storm flooding, the higher the risk of disease, which suggests that the authorities should take appropriate preventive and control measures before and after storm flooding.


Subject(s)
Communicable Diseases , Dysentery, Bacillary , Typhoid Fever , Humans , Dysentery, Bacillary/epidemiology , Urbanization , Typhoid Fever/epidemiology , Communicable Diseases/epidemiology , China/epidemiology
15.
J Pharm Anal ; 13(7): 817-829, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577384

ABSTRACT

Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction. Studies on the therapeutic effect and mechanism of immunomodulatory drugs on the sepsis-induced hyperinflammatory or immunosuppression states of various immune cells remain limited. This study aimed to investigate the protective effects and underlying mechanism of artesunate (ART) on the splenic microenvironment of cecal ligation and puncture-induced sepsis model mice using single-cell RNA sequencing (scRNA-seq) and experimental validations. The scRNA-seq analysis revealed that ART inhibited the activation of pro-inflammatory macrophages recruited during sepsis. ART could restore neutrophils' chemotaxis and immune function in the septic spleen. It inhibited the activation of T regulatory cells but promoted the cytotoxic function of natural killer cells during sepsis. ART also promoted the differentiation and activity of splenic B cells in mice with sepsis. These results indicated that ART could alleviate the inflammatory and/or immunosuppressive states of various immune cells involved in sepsis to balance the immune homeostasis within the host. Overall, this study provided a comprehensive investigation of the regulatory effect of ART on the splenic microenvironment in sepsis, thus contributing to the application of ART as adjunctive therapy for the clinical treatment of sepsis.

16.
Chem Commun (Camb) ; 59(58): 8981-8984, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37394927

ABSTRACT

Sofalcone (Sof), a synthetic analog of sophoradin, is a type of natural phenol derived from the traditional medicinal herb Sophora subprostrata, with potent anti-inflammatory activity. However, the mechanisms of action of Sof for treating intestinal-associated inflammation are not well known. In this work, we identified high mobility group box 1 (HMGB1) as the key covalent target of Sof for the anti-inflammatory activity in the human colonic epithelial cells through quantitative chemoproteomics profiling.


Subject(s)
Chalcones , HMGB1 Protein , Humans , Caco-2 Cells , Chalcones/pharmacology , Colon
17.
Acta Pharmacol Sin ; 44(9): 1801-1814, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37041228

ABSTRACT

Liver, as an immune and detoxification organ, represents an important line of defense against bacteria and infection and a vulnerable organ that is easily injured during sepsis. Artesunate (ART) is an anti-malaria agent, that also exhibits broad pharmacological activities including anti-inflammatory, immune-regulation and liver protection. In this study, we investigated the cellular responses in liver to sepsis infection and ART hepatic-protective mechanisms against sepsis. Cecal ligation and puncture (CLP)-induced sepsis model was established in mice. The mice were administered ART (10 mg/kg, i.p.) at 4 h, and sacrificed at 12 h after the surgery. Liver samples were collected for preparing single-cell RNA transcriptome sequencing (scRNA-seq). The scRNA-seq analysis revealed that sepsis-induced a dramatic reduction of hepatic endothelial cells, especially the subtypes characterized with proliferation and differentiation. Macrophages were recruited during sepsis and released inflammatory cytokines (Tnf, Il1b, Il6), chemokines (Ccl6, Cd14), and transcription factor (Nfkb1), resulting in liver inflammatory responses. Massive apoptosis of lymphocytes and abnormal recruitment of neutrophils caused immune dysfunction. ART treatment significantly improved the survival of CLP mice within 96 h, and partially relieved or reversed the above-mentioned pathological features, mitigating the impact of sepsis on liver injury, inflammation, and dysfunction. This study provides comprehensive fundamental proof for the liver protective efficacy of ART against sepsis infection, which would potentially contribute to its clinical translation for sepsis therapy. Single cell transcriptome reveals the changes of various hepatocyte subtypes of CLP-induced liver injury and the potential pharmacological effects of artesunate on sepsis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Sepsis , Mice , Animals , Artesunate/therapeutic use , Endothelial Cells/pathology , Sepsis/complications , Sepsis/drug therapy , Sequence Analysis, RNA
18.
Mil Med Res ; 10(1): 7, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36814339

ABSTRACT

BACKGROUND: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage. METHODS: C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing (scRNA-seq) was then carried out on TCS- or mock-treated mouse livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor (TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the molecular and cellular events after TCS exposure. To verify the TCS-induced liver fibrosis, the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson's trichrome and Sirius red staining. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies. RESULTS: We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control group profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells (HSCs) were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition, other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interaction-mediated cellular communication in promoting liver fibrosis. CONCLUSIONS: TCS modulates the cellular activities and fates of several specific cell types (including hepatocytes, HSCs, endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis. Overall, we provide the first comprehensive single-cell atlas of mouse livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Triclosan , Humans , Mice , Animals , Transcriptome , Endothelial Cells/metabolism , Endothelial Cells/pathology , Ligands , Proteomics , Mice, Inbred C57BL , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Fibrosis , Chemical and Drug Induced Liver Injury/pathology
19.
Metabolites ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422270

ABSTRACT

Tripterygium glycoside tablet (TGT), as a common clinical drug, can easily cause liver damage due to the narrow therapeutic window. Glycyrrhizic acid (GA) has a hepatoprotective effect, but the characteristics and mechanism of GA's impact on TGT-induced acute liver injury by regulating oxidative stress remain unelucidated. In this study, TGT-induced acute liver injury models were established in vitro and in vivo. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were quantified. The anti-apoptotic effect of GA was tested using flow cytometry. Potential target proteins of GA were profiled via activity-based protein profiling (ABPP) using a cysteine-specific (IAA-yne) probe. The results demonstrate that GA markedly decreased the concentrations of ALT, AST, AKP, MDA, LDH, TNF-α, IL-1ß and IL-6, whereas those of SOD, GSH and CAT increased. GA could inhibit TGT-induced apoptosis in BRL-3A cells. GA bound directly to the cysteine residue of PKM2. The CETSA and enzyme activity results validate the specific targets identified. GA could mitigate TGT-induced acute liver injury by mediating PKM2, reducing oxidative stress and inflammation and reducing hepatocyte apoptosis.

20.
Precis Clin Med ; 5(4): pbac023, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36349141

ABSTRACT

Background: Aristolochic acids (AAs), a class of carcinogenic and mutagenic natural products from Aristolochia and Asarum plants, are well-known to be responsible for inducing nephrotoxicity and urothelial carcinoma. Recently, accumulating evidence suggests that exposure to AAs could also induce hepatotoxicity and even hepatocellular carcinoma, though the mechanisms are poorly defined. Methods: Here, we aimed to dissect the underlying cellular and molecular mechanisms of aristolochic acid I (AAI)-induced hepatotoxicity by using advanced single-cell RNA sequencing (scRNA-seq) and proteomics techniques. We established the first single-cell atlas of mouse livers in response to AAI. Results: In hepatocytes, our results indicated that AAI activated NF-κB and STAT3 signaling pathways, which may contribute to the inflammatory response and apoptosis. In liver sinusoidal endothelial cells (LSECs), AAI activated multiple oxidative stress and inflammatory associated signaling pathways and induced apoptosis. Importantly, AAI induced infiltration of cytotoxic T cells and activation of proinflammatory macrophage and neutrophil cells in the liver to produce inflammatory cytokines to aggravate inflammation. Conclusions: Collectively, our study provides novel knowledge of AAs-induced molecular characteristics of hepatotoxicity at a single-cell level and suggests future treatment options for AAs associated hepatotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...