Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120769

ABSTRACT

Development of low thermal conductivity and high strength building materials is an emerging strategy to solve the heavy energy consumption of buildings. This study develops sustainable alkali activated materials (AAMs) for structural members from waste expanded polystyrene (EPS) beads and reduced graphene oxide (rGO) to simultaneously meet the thermal insulation and mechanical requirements of building energy conservation. It was found that the thermal conductivity of AAMs with 80 vol.% EPS and 0.04 wt.% rGO (E8-G4) decreased by 74% compared to the AAMs without EPS and rGO (E0). The 28-day compressive and flexural strengths of E8-G4 increased by 29.8% and 26.5% with the addition of 80 vol.% EPS and 0.04 wt.% rGO, compared to the sample with 80 vol.% EPS without rGO (E8). In terms of compressive strength, thermal conductivity, and cost, the efficiency index of E8-G4 was higher than those of other materials. A building model made from AAMs was designed using building information modeling (BIM) tools to simulate energy consumption, and 31.78% of total energy consumption (including heating and cooling) was saved in the building operation period in Harbin City, China. Hence, AAMs made of waste EPS beads and rGO can realize the structural and functional integrated application in the future.

2.
Nanomaterials (Basel) ; 9(12)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816867

ABSTRACT

With the development of nanotechnology, reduced graphene oxide (rGO) has been used to improve the flexural strength of geopolymers. However, the reinforcing mechanism of rGO nanosheets on the flexural strength of geopolymers remains unclear. Here, this reinforcing mechanism was investigated from the perspectives of hydration and chemical composition. The effect of the reduction degree on rGO-reinforced geopolymers was also studied using isothermal calorimetry (IC), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) tests. Results show that the hydration degree and flexural strength of geopolymers effectively increase due to rGO addition. After alkali reduction at a temperature of 60 °C, rGO nanosheets have maximum reinforcement on the flexural strength of geopolymers with an increment of 51.2%. It is attributed to the promotion of slag hydration, as well as the simultaneous formation of calcium silicate hydrate with low Ca/Si ratio (C-S-H(I)) and calcium aluminosilicate hydrate (C-A-S-H) phases due to the inhibiting effect of rGO nanosheets on Al substitution on the end-of-chain silicates of C-S-H and C-A-S-H gels. In addition, different reduction degrees have almost no effect on the chemical composition of rGO-reinforced geopolymers, while excessive reduction impairs the improving effect of rGO nanosheets on the hydration process and flexural strength of geopolymers due to significant structural defects.

3.
Materials (Basel) ; 13(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31887987

ABSTRACT

Coral aggregate has been widely used for island construction because of its local availability. However, the addition of coral aggregate exaggerates the brittle nature of cement-based materials under dynamic loading. In this study, polyvinyl alcohol (PVA) fiber was used to improve dynamic mechanical behavior of seawater coral mortars (SCMs). The effects of coral aggregate and PVA fiber on the workability, static mechanical strengths, and dynamic mechanical behavior of fiber-reinforced SCMs were investigated. Results showed that the workability of the SCM decreased with increasing coral aggregate replacement rate and PVA fiber content. Mechanical strengths of the SCM increased with increasing PVA fiber content, but decreased with increasing coral aggregate replacement rate. Dynamic mechanical behavior at varying coral aggregate replacement rates was analyzed by combining dynamic mechanical analysis and micro-scale elastic modulus experiment. With increasing coral aggregate replacement rate, the storage modulus, loss factor, and elastic modulus of the interfacial transition zone in the SCM decreased. Nevertheless, with the incorporation of PVA fibers (1 vol.%), the storage modulus and loss factor were improved dramatically by 151.9 and 73.3%, respectively, compared with the reference group. Therefore, fiber-reinforced coral mortars have a great potential for use in island construction, owing to the excellent anti-vibrational performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...