Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952321

ABSTRACT

The addition of crumb rubber (CR) into base asphalt plays a critical role in the improvement of the performance of Asphalt-Rubber (AR) binders. However, due to the problems, like high constructing temperature and energy consumption brought by the additional rubber, the use of AR binders could be limited in some areas. During this study, CR is processed by microwave is adopted to reduce the viscosity of the AR binders system, while the CR processed by long screw extrusion also is studied. First, the swelling (the absorption of light component into the CR particle) and dissolution (some molecules of CR dissolving into the base asphalt), both of which determine the improved performance of AR binders, are investigated by fluorescence microscopy and extraction tests. The size of the CR particle after swelling observed by fluorescence microscopy is used to evaluate the swelling rate of CR samples, and the ratio of the weight loss of CR samples after extraction to the original weight is employed to measure the dissolution rate. Then, Brookfield rotational viscometer and storage stability tests are conducted. Last, the rheologic performance, including high and low-temperature performances, is characterized by the dynamic shear rheometer (DSR) and bending beam rheometer (BBR), respectively. The fluorescence microscopy and extraction results show that microwave processing could effectively increase the swelling and dissolving rate, with the figures rising twofold and more than threefold, respectively. The results show that microwave processing could effectively reduce the viscosity of AR binders, with a viscosity decrease of 65% at 190 °C and, at the same time, the high temperature of Performance Grade (PG) decrease from 88 °C to 76 °C. The storage stability could be negatively impacted, but it is slight and the low-temperature performance is improved slightly.

3.
PLoS One ; 13(11): e0204130, 2018.
Article in English | MEDLINE | ID: mdl-30383817

ABSTRACT

Knowledge about soil nitrogen (N) and phosphorus (P) concentrations, stocks, and stoichiometric ratios is crucial for understanding the biogeochemical cycles and ecosystem function in arid mountainous forests. However, the corresponding information is scarce, particularly in arid mountainous forests. To fill this gap, we investigated the depth and elevational patterns of the soil N and P concentrations and the N: P ratios in a Picea schrenkiana forest using data from soil profiles collected during 2012-2017. Our results showed that the soil N and P concentrations and the N: P ratios varied from 0.15 g kg-1 to 0.56 g kg-1 (average of 0.31 g kg-1), from 0.09 g kg-1 to 0.16 g kg-1 (average of 0.12 g kg-1), and from 2.42 g kg-1 to 4.36 g kg-1 (average of 3.42 g kg-1), respectively; additionally, values significantly and linearly decreased with soil depth. We did not observe a significant variation in the soil N and P concentrations and the N: P ratios with the elevational gradient. In contrast, our results revealed that the mean annual temperature and mean annual precipitation exhibited a more significant influence on the soil N and P concentrations and the N: P ratios than did elevation. This finding indicated that climatic variables might have a more direct impact on soil nutrient status than elevation. The observed relationship among the soil N and P concentrations and the N: P ratios demonstrated that the soil N was closely coupled with the soil P in the P. schrenkiana forest.


Subject(s)
Nitrogen/analysis , Phosphorus/analysis , Picea/chemistry , Soil/chemistry , Trees/chemistry , Climate , Forests , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...