Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(12): 5037-5045, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38477697

ABSTRACT

Uranium poses severe health risks due to its radioactivity and chemical toxicity if released into the environment. Therefore, there is an urgent demand to develop sensing materials in situ monitoring of uranium with high sensitivity and stability. In this work, a fluorescent Eu3+-TFPB-Bpy is synthesized by grafting Eu3+ cation onto TFPB-Bpy covalent organic framework (COF) synthesized through Schiff base condensation of monomers 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 5,5'-diamino-2,2'-bipyridine (Bpy). The fluorescence of Eu3+-TFPB-Bpy is enhanced compared with that of TFPB-Bpy, which is originated from the intramolecular rotations of building blocks limited by the bipyridine units of TFPB-Bpy coordinated with Eu3+. More significantly, Eu3+-TFPB-Bpy is a highly efficient probe for sensing UO22+ in aqueous solution with the luminescence intensity efficiently amplified by complexation of UO22+ with Eu3+. The turn-on sensing capability was derived from the resonance energy transfer occurring from UO22+ to the Eu3+-TFPB-Bpy. The developed probe displayed desirable linear range from 5 nM to 5 µM with good selectivity and rapid response time (2 s) for UO22+ in mining wastewater. This strategy provides a vivid illustration for designing luminescence lanthanide COF hybrid materials with applications in environmental monitoring.

2.
Anal Chem ; 96(8): 3553-3560, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38362858

ABSTRACT

Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.

3.
Small ; 20(25): e2310672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229539

ABSTRACT

At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.

4.
Angew Chem Int Ed Engl ; 62(52): e202313970, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37953692

ABSTRACT

Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI-COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI-COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.

5.
Anal Chem ; 95(28): 10803-10811, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37401846

ABSTRACT

The structural isomerism of the covalent organic framework (COF) has a significant effect on the electrochemiluminescence (ECL) performance. Herein, we report a pair of isomeric COFs, (TFPB-BD(OMe)2-H and TAPB-BD(OMe)2-H), based on the different directions of imine linkages and further conversion of the imine to the quinoline structure. The obtained two isomeric COFs with the same composition and similar structures exhibit dramatic differences in the photoelectrochemical and ECL fields. Indeed, TFPB-BD(OMe)2-H demonstrates robust ECL emission superior to that of TAPB-BD(OMe)2-H. The difference in ECL performance is due to the stronger polar interaction of TFPB-BD(OMe)2-H than that of TAPB-BD(OMe)2-H. The polarity is derived from the uneven charge distribution within the framework and enhances the electron interactions. In addition, the ordered conjugate skeleton provides high-speed charge transport channels for carrier transport. Therefore, the TFPB-BD(OMe)2-H presents a smaller band gap energy and stronger polarization interaction, which are more favorable to charge migration to achieve stronger ECL signals. Furthermore, we describe a convenient ECL sensor for detecting toxic As(V) with an outstanding detection property and ultralow detection limit. This work provides a guiding principle for the design and development of ECL organic luminophores.

6.
Anal Chem ; 95(22): 8696-8705, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37224420

ABSTRACT

The application of covalent organic frameworks (COFs) in electrochemiluminescence (ECL) is promising in environmental monitoring. Developing an emerging design strategy to expand the class of COF-based ECL luminophores is highly desirable. Here, a COF-based host-guest system was constructed through guest molecular assembly to deal with nuclear contamination analysis. The efficient charge transport network was formed by inserting an electron-withdrawing guest tetracyanoquinodimethane (TCNQ) into the open space of the COF host (TP-TBDA; TP = 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde and TBDA = 2,5-di(thiophen-2-yl)benzene-1,4-diamine) with an electron-donating property; the construction of the COF-based host-guest system (TP-TBDA@TCNQ) triggered the ECL emission of non-emitting TP-TBDA. Furthermore, the dense active sites in TP-TBDA were utilized to capture the target substance UO22+. The presence of UO22+ broke the charge-transfer effect in TP-TBDA@TCNQ, resulting in the weakening of the ECL signal, thus the established ECL system integrating the low detection limit with high selectivity monitors UO22+. This COF-based host-guest system provides a novel material platform for constructing late-model ECL luminophores and creates an opportunity for the vigorous ECL technology.

7.
J Hazard Mater ; 455: 131581, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37167874

ABSTRACT

Plasmonic photocatalysis is an effective strategy to solve radioactive uranium hazards in wastewater. A plasmonic photocatalyst Bi/Bi2O3-x@COFs was synthesized by in-situ growth of covalent organic frameworks (COFs) on Bi/Bi2O3-x surface for the U(VI) adsorption and plasmonic photoreduction in rare earth tailings wastewater. The presence of oxygen vacancy in Bi/Bi2O3-x and Schottky potential well formed by Bi and Bi2O3-x interface increased the number of free electrons, which induced localized surface plasmon resonance (LSPR) and enhanced the light absorption performance of composites. In addition, oxygen vacancy improved the Fermi level of Bi/Bi2O3-x, leading to another potential well between Bi2O3-x and COFs interface. The electron transport direction was reversed, thus increasing the electron density of COFs layer. COFs was an N-type semiconductor with specific binding U(VI) groups and suitable band structure, which could be used as an active reaction site. Bi/Bi2O3-x@COFs had 1411.5 mg g-1 removal capacity and high separation coefficient for U(VI) due to the synergistic action of photogenerated electrons and hot electrons. Moreover, the removal rate of uranium from rare earth tailings wastewater by regenerated Bi/Bi2O3-x@COFs was over 93.9%. The scheme of introducing LSPR and Schottky potential well provides another way to improve the photocatalytic effect.

8.
J Hazard Mater ; 451: 131189, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36933503

ABSTRACT

Photocatalytic reduction of UVI to UIV can help remove U from the environment and thus reduce the harmful impacts of radiation emitted by uranium isotopes. Herein, we first synthesized Bi4Ti3O12 (B1) particles, then B1 was crosslinked with 6-chloro-1,3,5-triazine-diamine (DCT) to afford B2. Finally, B3 was formed using B2 and 4-formylbenzaldehyde (BA-CHO) to investigate the utility of the D-π-A array structure for photocatalytic UVI removal from rare earth tailings wastewater. B1 lacked adsorption sites and displayed a wide band gap. The grafted triazine moiety in B2 introduced active sites and narrowed the band gap. Notably, B3, a Bi4Ti3O12 (donor)-triazine unit (π-electron bridge)-aldehyde benzene (acceptor) molecule, effectively formed the D-π-A array structure, which formed multiple polarization fields and further narrowed the band gap. Therefore, UVI was more likely to capture electrons at the adsorption site of B3 and be reduced to UIV due to energy level matching effects. UVI removal capacity of B3 under simulated sunlight was 684.9 mg g-1, 2.5 times greater than B1 and 1.8 times greater than B2. B3 was still active after multiple reaction cycles, and UVI removal from tailings wastewater reached 90.8%. Overall, B3 provides an alternative design scheme for enhancing photocatalytic performance.

9.
Nat Commun ; 13(1): 7621, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494388

ABSTRACT

The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp2 carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability. Furthermore, the positively charged frameworks with regular porosity endow 3D ionic COFs with selective capture radioactive ReO4-/TcO4- and great removal efficiency in simulated Hanford waste. This research not only broadens the category of 3D COFs but also promotes the application of COFs as efficient functional materials.


Subject(s)
Metal-Organic Frameworks , Ions , Alkenes , Carbon
10.
Anal Chem ; 93(48): 16149-16157, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34792351

ABSTRACT

Electrochemiluminescence (ECL), as an advanced sensing process, can selectively control the generation of excited states by changing the potential. However, most of the existing ECL systems rely on poisonous coreactants to provide radicals for luminescence; although the ECL efficiency was improved, the athematic coreactants will cause unpredictable interference to the accurate analysis of trace targets. Herein, we realized the ECL of nonemitting molecules by performing intramolecular electron transfer in the olefin-linked covalent organic frameworks (COFs), with a high efficiency of 63.7%. Employing internal dissolved oxygen as the coreactant, it is well suitable for the analysis of various complex samples in the environment. Taking nuclear contamination analysis as the goal orientation, we further illustrated a design of a "turn-on" uranyl ion monitoring system integrating fast response, low detection limit, and high selectivity, showing that new ECL-COFs are promising to facilitate environment-related sensing analysis and structure-feature correlation mechanism exploration.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Electrochemical Techniques , Luminescence , Luminescent Measurements , Photometry
11.
ACS Appl Mater Interfaces ; 13(40): 47921-47931, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34601862

ABSTRACT

Covalent organic frameworks (COFs) with stable long-range ordered arrangements are promising materials for organic optoelectronics. However, their electrochemiluminescence (ECL) from non-ECL active monomers has not been realized. Here, we report a design strategy for ECL-emitting COF family. The donors and acceptors co-crystallized and stacked into the highly aligned array of olefin-linked COFs, so that electrons can be transported freely. By this means, a tunable ECL is activated from non-ECL molecules with the maximum efficiency of 32.1% in water with the dissolved oxygen as an inner coreactant, and no additional noxious co-reactant is needed any more. Quantum chemistry calculations further demonstrate that this design reduces the COFs' band gaps and the overlap of electrons and holes in the excited state for better photoelectric properties and stronger ECL signals. This work exploits a basis to envisage the broad application potential of ECL-COFs for various biosensors and light-emitting display.

13.
Nat Commun ; 12(1): 4735, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34354067

ABSTRACT

Electrochemiluminescence (ECL) plays a key role in analysis and sensing because of its high sensitivity and low background. Its wide applications are however limited by a lack of highly tunable ECL luminophores. Here we develop a scalable method to design ECL emitters of covalent organic frameworks (COFs) in aqueous medium by simultaneously restricting the donor and acceptor to the COFs' tight electron configurations and constructing high-speed charge transport networks through olefin linkages. This design allows efficient intramolecular charge transfer for strong ECL, and no exogenous poisonous co-reactants are needed. Olefin-linked donor-acceptor conjugated COFs, systematically synthesized by combining non-ECL active monomers with C2v or C3v symmetry, exhibit strong ECL signals, which can be boosted by increasing the chain length and conjugation of monomers. The present concept demonstrates that the highly efficient COF-based ECL luminophores can be precisely designed, providing a promising direction toward COF-based ECL phosphors.

14.
Chem Commun (Camb) ; 56(42): 5625-5628, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32300766

ABSTRACT

Gold nanoparticles (AuNPs) decorated carbon nitride nanosheets (Au-g-C3N4 NSs) could work as an excellent on-electrode cathodic coreactant for Ru(bpy)32+. Based on the regulation effect of AuNPs and mercury (Hg2+) for the dual-potential electrochemiluminescence (ECL) of Ru(bpy)32+, a simple, sensitive and selective ECL system was created for the ratiometric sensing of Hg2+.

SELECTION OF CITATIONS
SEARCH DETAIL
...