Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 113: 543-549, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29444471

ABSTRACT

An efficient acid-hydrolysis method was developed and optimized for the hydrolyses of polysaccharide from Auricularia auricula with the ABTS· scavenging ability as the detective marker. Based on the single factor experimental results, Box-Behnken design (BBD) were applied for the optimization of acid-hydrolysis conditions. The possible antioxidant mechanism of the hydrolyses (AAPs-F) in vivo was performed using the C. elegans model. The acid-hydrolysis conditions were found to be the optimal hydrolyzing time 2.78h (166.8min), hydrolyzing temperature 95.04°C and the acid concentration 14.03mol/L, respectively. Under the optimal acid-hydrolysis conditions, the ABTS· scavenging ability of AAPs-H was 97.94±0.87%, which was well matched with the predicted value (99.77%) of the BBD model. AAPs-F was the main fraction of AAPs-H separated through Sephadex G-10 as the stationary phase. AAPs-F was a kind of heteropolysaccharide and comprised of glucose, galactose and fucose with the molar ratio of 50:1:2. The molecular weight of AAPs-F was 143.15kDa. AAPs-F showed a remarkable protective effect to the injury induced by hydrogen peroxide or paraquat (p<0.01), and it could up-regulate stress-resistance related enzymes including superoxide dismutase (SOD) by 109.74% and CAT by 106.84% at concentration of 0.2mg/mL in C. elegans.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Basidiomycota/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Animals , Benzothiazoles/chemistry , Caenorhabditis elegans , Catalase/metabolism , Molecular Weight , Oxidative Stress/drug effects , Sulfonic Acids/chemistry , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...