Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pathol Oncol Res ; 27: 601693, 2021.
Article in English | MEDLINE | ID: mdl-34257558

ABSTRACT

Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Due to the lack of effective biomarkers and its complex immune microenvironment, the effects of current HCC therapies are not ideal. In this study, we used the GSE57957 microarray data from Gene Expression Omnibus database to construct a co-expression network. The weighted gene co-expression network analysis and CIBERSORT algorithm, which quantifies cellular composition of immune cells, were used to identify modules related to immune cells. Four hub genes (EFTUD2, GAPDH, NOP56, PA2G4) were identified by co-expression network and protein-protein interactions network analysis. We examined these genes in TCGA database, and found that the four hub genes were highly expressed in tumor tissues in multiple HCC groups, and the expression levels were significantly correlated with patient survival time, pathological stage and tumor progression. On the other hand, methylation analysis showed that the up-regulation of EFTUD2, GAPDH, NOP56 might be due to the hypomethylation status of their promoters. Next, we investigated the correlations between the expression levels of four hub genes and tumor immune infiltration using Tumor Immune Estimation Resource (TIMER). Gene set variation analysis suggested that the four hub genes were associated with numerous pathways that affect tumor progression or immune microenvironment. Overall, our results showed that the four hub genes were closely related to tumor prognosis, and may serve as targets for treatment and diagnosis of HCC. In addition, the associations between these genes and immune infiltration enhanced our understanding of tumor immune environment and provided new directions for the development of drugs and the monitoring of tumor immune status.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Liver Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment , Biomarkers, Tumor/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Computational Biology , Gene Expression Profiling , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Prognosis , Protein Interaction Maps , Survival Rate
2.
Front Cell Dev Biol ; 9: 679658, 2021.
Article in English | MEDLINE | ID: mdl-34195198

ABSTRACT

BACKGROUND: Non-small cell lung carcinoma (NSCLC) is a type lung cancer with high malignant behaviors. MicroRNAs (miRNAs) are known to be involved in progression of NSCLC. In order to explore potential targets for the treatment of NSCLC, bioinformatics tool was used to analyze differential expressed miRNAs between NSCLC and adjacent normal tissues. METHODS: Bioinformatics tool was used to find potential targets for NSCLC. Cell proliferation was investigated by Ki67 staining. Cell apoptosis was measured by flow cytometry. mRNA and protein expression in NSCLC cells were detected by RT-qPCR and Western-blot, respectively. Transwell assay was performed to test the cell migration and invasion. In order to investigate the function of exosomal miRNA in NSCLC, in vivo model of NSCLC was constructed. RESULTS: MiR-770 was identified to be downregulated in NSCLC, and miR-770 agomir could significantly inhibit NSCLC cell proliferation through inducing the apoptosis. Additionally, the metastasis of NSCLC cells was decreased by miR-770 agomir. MAP3K1 was identified to be the target mRNA of miR-770. Meanwhile, tumor cell-derived exosomal miR-770 inhibited M2 macrophage polarization via downregulation of MAP3K1, which in turn suppressed NSCLC cell invasion. Besides, tumor cell-derived exosomal miR-770 markedly decreased NSCLC tumor growth in vivo through suppressing M2 macrophage polarization. CONCLUSION: Tumor cell-derived exosomal miR-770 inhibits M2 macrophage polarization to inhibit the invasion of NSCLC cells via targeting MAP3K1. Thus, this study provided a new strategy for the treatment of NSCLC.

3.
Aging (Albany NY) ; 13(8): 10833-10852, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879634

ABSTRACT

Coronavirus disease 2019 (COVID-19) experienced an outbreak that expanded worldwide. Lopinavir/ritonavir (LPV/r), which is used effectively for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronavirus infections, was applied for COVID-19 treatment given similarities in the molecular structures of these viruses. We performed a systematic review and meta-analysis to evaluate the efficacy and safety of lopinavir/ritonavir antiviral treatment in patients with SARS, MERS, and COVID-19. After registration with INPLASY, a search was conducted in PubMed, Embase, China National Knowledge Infrastructure (CNKI), Cochrane Library, WanFang Data, China Biomedical Literature Database (CBM) and other databases for all relevant literature on lopinavir/ritonavir treatment of SARS, MERS and COVID-19. The Cochrane Collaboration's bias risk assessment tool and the Newcastle-Ottawa Scale (NOS) were used to evaluate the quality of the literature, and RevMan 5.3 software was used to evaluate the relevant outcome indicators of the efficacy and safety of lopinavir/ritonavir in the treatment of COVID-19. A total of 18 eligible studies (including randomized controlled studies, cohort studies, and case-control studies) were retrieved and included with a total of 2273 patients. The lopinavir/ritonavir group exhibited an increased nucleic acid conversion rate (P=0.004), higher virus clearance rate (P<0.0001), lower mortality rate (P=0.002), and reduced incidence of acute respiratory distress syndrome (ARDS) (P=0.02) compared with the control group. No significant benefit in the improvement rate of chest CT (P=0.08) or incidence of adverse events (P=0.45) was noted. The lopinavir/ritonavir group had a lower incidence of acute respiratory distress syndrome (P=0.02). According to the clinical prognostic results, the incidence of adverse events between the two groups was not statistically significant (P<0.0001). The efficacy of lopinavir/ritonavir in the treatment of patients with SARS, MERS and COVID-19 was significantly better than that of the control. Furthermore, the incidence of adverse events did not significantly increase. Lopinavir/ritonavir is effective in the treatment of COVID-19, and this combination should be further assessed in RCT studies. In addition, when we analyzed the differences in age and sex, we found that the differences were statistically significant in the safety and effectiveness of lopinavir/ritonavir in patients with COVID-19, and both of these factors played a significant role in the trial.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , Coronavirus Infections/drug therapy , Female , Humans , Male , Middle Aged , Severe Acute Respiratory Syndrome/drug therapy , Young Adult
4.
Ann Transl Med ; 8(20): 1292, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33209872

ABSTRACT

BACKGROUND: The optimal treatment modality for patients with stage IA (T1N0M0) small-cell lung cancer (SCLC) is still unclear. METHODS: Patients who received surgical resection or chemo-radiotherapy (CRT) between January 2004 and December 2014 were identified from The Surveillance, Epidemiology and End Results (SEER) database. Surgical resection included lobectomy, wedge resection, segmentectomy with lymphadenectomy [examined lymph node (ELN) ≥1]. Propensity score match analysis was utilized to balance the baseline characteristics. RESULTS: A total of 686 stage IA SCLC cases were included: 337 patients underwent surgery and 349 patients were treated by CRT alone. Surgery achieved a better outcome than CRT alone, with an adjusted hazard ratio (HR) of 0.495. Patients who underwent lobectomy demonstrated a longer overall survival (OS), compared to those who received sublobectomy (crude cohort, median OS, 69 vs. 38 months; match cohort, median OS, 67 vs. 38 months). Patients with ELN >7 presented with longer OS than those with ELN ≤7 (crude cohort, median OS, 91 vs. 49 months; matched cohort, median OS, 91 vs. 54 months). The additional efficacy of chemotherapy or radiotherapy in patients receiving lobectomy was observed. The best prognosis was achieved in the lobectomy plus CRT cohort, with a 5-year survival rate of 73.5%. CONCLUSIONS: The prolonged survival associated with lobectomy and chemotherapy or radiotherapy presents a viable treatment option in the management of patients with stage IA SCLC.

5.
J Thorac Dis ; 12(6): 3178-3187, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32642239

ABSTRACT

BACKGROUND: Lobectomy has long been regarded as the standard treatment for operable non-small cell lung cancer (NSCLC). Recent studies suggested that segmentectomy could achieve a good prognosis for early-stage NSCLC and might be an alternative to lobectomy in this cohort. Until now, on the issue of comparison between lobectomy and segmentectomy, there remains no published randomized controlled trial (RCT), and all existing evidence is low. Recently, a categorization of lower-level evidence has been proposed, namely, the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. The aim of this meta-analysis is to compare the oncologic outcome between lobectomy and segmentectomy in NSCLC with the clinical T1N0M0 stage according to the GRADE system. METHODS: PubMed, the PMC database, EMBASE, Web of Science, and the Cochrane library were searched prior to May 2019 to identify studies that compared the prognosis between lobectomy and segmentectomy for clinical T1N0M0 NSCLC. The evidence level of the included studies was assessed according to the GRADE system, including level IIA, probably not confounded nonrandomized comparison; level IIB, possibly confounded nonrandomized comparison; and level IIC, probably confounded nonrandomized comparison. The predefined outcomes included overall survival (OS) and disease-free survival (DFS). Univariable and multivariable hazard ratios (HRs) with 95% confidence intervals (95% CI) were pooled using a random-effects model. RESULTS: Twelve nonrandomized studies involving 8,072 participants were included. Of these studies, two were classified as IIA level (16.7%), six as IIB level (50.0%), and four as IIC level (33.3%). When crude HRs were included, compared with lobectomy, segmentectomy was associated with shorter OS but comparable DFS in the entire cohort (OS, pooled HR =1.45, 95% CI, 1.23 to 1.67; DFS, pooled HR =1.03, 95% CI, 0.65 to 1.82) and in patients with nodules ≤2 cm (OS, pooled HR =1.55, 95% CI, 1.33 to 1.80; DFS, pooled HR =0.98, 95% CI, 0.55 to 1.77). When adjusted HRs were included, the impact of segmentectomy on OS and DFS was comparable to that of lobectomy in the entire cohort (OS, pooled HR =1.39, 95% CI, 0.92 to 2.10; DFS, pooled HR =0.83, 95% CI, 0.66 to 1.03) and in patients with nodules ≤2 cm (OS, pooled HR =1.61, 95% CI, 0.87 to 3.00; DFS, pooled HR =0.90, 95% CI, 0.63 to 1.27). CONCLUSIONS: Based on our results, although shorter OS is observed in patients received segmentectomy, it is necessary to wait for more results from RCT to draw a valid conclusion.

6.
J Cancer Res Clin Oncol ; 146(9): 2359-2367, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32333141

ABSTRACT

PURPOSE: Multiple lung lesions found in a single patient at the time of diagnosis often pose a diagnostic dilemma: are these lesions independent primary tumors (IPT) or the result of intrapulmonary metastases (IPM)? While traditional pathological methods sometimes have difficulty distinguishing IPM from IPT, modern molecular profiling based on next-generation sequencing techniques may provide a new strategy. METHODS: Sixteen patients with multiple tumors were enrolled in this study. We performed targeted deep sequencing (~ 2000 × coverage) on a total of 40 tumors and matched blood samples. We compared mutational profiles between tumors within each patient and across patients to evaluate if they were genetically related. Computed tomographic images and histological staining were also used to validate tumor relationships. RESULTS: A total of 125 mutations were identified in 16 patients. Twelve out of fourteen patients whose histological diagnoses favored IPT did not have any shared mutations in their multiple tumors. The other two showed discrepancies: Pt01 had a shared EGFR exon19 deletion in the two lung tumors found, and Pt16 had one common mutation (BRAFD594G) in two out of five lung tumors. Pt14 with lung metastasis from salivary gland adenoid cystic carcinoma had shared mutations; and Pt15 with suspected intrapulmonary metastasis (IPM) had identical mutations between the two tumors. Visualized data can be readily accessed through the website: mlc.opengene.org. CONCLUSION: Analysis of overlapping mutations among different tumors assists physicians in distinguishing IPM from IPT. Our findings demonstrate that DNA sequencing can provide additional evidence in clinical practice when pathology is inadequate to make a conclusive diagnosis.


Subject(s)
Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/pathology , Adult , Aged , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Lung/pathology , Male , Middle Aged , Mutation/genetics , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...