Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(6): e0287379, 2023.
Article in English | MEDLINE | ID: mdl-37347733

ABSTRACT

A limited number of studies focus on the effect of core training on basketball players' athletic performance and skills. This systematic reviewaimed to comprehensively and critically review the available studies in the literature that investigate the impact of core training on basketball players' physical and skill performance, and then offer valuable recommendations for both coaches and researchers. Thedata collection, selection, and analysis adhered to the PRISMA protocol. English databases, including Ebscohost, Scopus, PubMed, Web of Science, and Google Scholar,were searched until September 2022. A total of eight articles were included, with four studies comparing the effects of core training versus traditional strength training or usual basketball training. All studies investigated the impact of core training on athletic performance. The findings revealed that core training can help players improve their overall athletic and skill performance, particularly in the areas of strength, sprinting,jumping, balance, agility, shooting, dribbling, passing, rebounding, and stepping. In addition, core training, particularly on unstable surfaces,as well as combining static and dynamic core training,improvebasketball players' athletic and skill performance. Despite the relativelylittle evidence demonstrating the effect of core training on endurance, flexibility, and defensive skills, this review demonstrates that it should be incorporated into basketball training sessions.


Subject(s)
Athletic Performance , Basketball , Resistance Training , Humans , Athletic Performance/statistics & numerical data , Resistance Training/methods
2.
Front Physiol ; 13: 1045870, 2022.
Article in English | MEDLINE | ID: mdl-36531163

ABSTRACT

This systematic review aims to illuminate the effects of functional training on sprinting, jumping, and functional movements in athletes. A systematic search of electronic databases-that include PubMed, EBSCOhost (Sport Discus), SCOPUS, ProQuest, Google Scholar, and additional references-was carried out using keywords associated with functional training, jumping, sprinting, functional movement skills, and athletes, in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement criteria. The Physiotherapy Evidence Database (PEDro) scale was used to measure the methodological quality of the studies included in the systematic review. Results: From a total of 220 studies, 15 included ones met all eligibility criteria and were scored between 4-5 points-considered as" moderate quality"-by the PEDro scale. Most studies recorded positive effects of functional training on athletes' sprinting, jumping, and functional movement. In contrast, a small number of studies did not find any positive effects of functional training on sprinting, squat jump, vertical jump, and countermovement jump due to the short duration and frequency of the training, as well as the lack of additional exercises that come with the interventions. Furthermore, the reviewed studies reveal that there is limited research within the literature on 5, 15, 25, and 50 m sprinting, squat jump, quadrant jump, and functional movement in athletes. Conclusion: Although the length of training interventions varied across studies in this systematic review, functional training interventions were found to help improve athletes' performance. The review reveals that training duration, intensity, and frequency are some critical variables that need to be taken into account when developing a successful functional training intervention for athletes. More studies are required to evaluate the influence of different accessible functional training durations on athletes' sprinting, jumping performance, and functional movement. Finally, further research needs to be done to investigate the impacts of functional training on performance and movement skills of male and female athletes at all levels in other sports. Systematic Review Registration: https://inplasy.com/inplasy-2022-5-0130/, identifier INPLASY202250130.

3.
Front Physiol ; 13: 1024418, 2022.
Article in English | MEDLINE | ID: mdl-36505069

ABSTRACT

Background: Plyometric training (PT) has been researched extensively in athletic populations. However, the effects of PT on tennis players are less clear. Methods: We aim to consolidate the existing research on the effects of PT on healthy tennis players' skill and physical performance. On 30th May 2022, a comprehensive search of SCOPUS, PubMed, Web of Science, and SPORTDiscus (via EBSCOhost) databases was performed. PICOS was employed to define the inclusion criteria: 1) healthy tennis players; 2) a PT program; 3) compared a plyometric intervention to a control group or another exercise group, and single-group trials; 4) tested at least one measures of tennis skill or physical performance; and 5) non-randomized study trials and randomized control designs. Individual studies' methodological quality was evaluated by using the Cochrane RoB-2 and ROBINS-I instruments. Using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), the certainty of the body of evidence for each outcome was assessed, and Comprehensive Meta-Analysis software was employed for the meta-analysis. Results: Twelve studies comprising 443 tennis players aged 12.5-25 years were eligible for inclusion. The PT lasted from 3 to 9 weeks. Eight studies provided data to allow for the pooling of results in a meta-analysis. A moderate positive effect was detected for PT programs on maximal serve velocity (ES = 0.75; p < 0.0001). In terms of measures of physical performance, small to moderate (ES = 0.43-0.88; p = 0.046 to < 0.001) effects were noted for sprint speed, lower extremity muscle power, and agility. While no significant and small effect was noted for lower extremity muscle strength (ES = 0.30; p = 0.115). We found no definitive evidence that PT changed other parameters (i.e., serve accuracy, upper extremity power and strength, reaction time, and aerobic endurance). Based on GRADE, the certainty of evidence across the included studies varied from very low to moderate. Conclusion: PT may improve maximal serve velocity and physical performance components (sprint speed, lower extremity muscular power, and agility) for healthy tennis players; however, more high-quality evidence about the effects of PT on the skill and physical performance of tennis players merits further investigation. Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY202250146].

4.
Front Physiol ; 13: 915259, 2022.
Article in English | MEDLINE | ID: mdl-35755428

ABSTRACT

Background: This study aims to present a critical review of the existing literature on the effect of core training on athletes' skill performance, and to provide recommendations and suggest future research directions for both coaches and researchers. Methods: The data in this study were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. We collected studies in the literature using prominent academic and scientific databases such as Ebscohost, Scopus, PubMed, Web of Science, and Google Scholar. Only 16 of the 119 studies met all of the inclusion criteria, and were thus included in the systematic review. Each study's quality was determined using the PEDro scale. The scoring of 16 studies ranges from 2 to 5. Results: Core training could potentially improve skill performance among football, handball, basketball, swimming, dancing, Karate, Muay Thai, gymnasts, volleyball, badminton, and golf players. Conclusion: Compared with the traditional training methods, core training is a new strength training method. Strong core muscles function as hubs in the biological motor chain, which create a fulcrum for the four limbs' strength and establish a channel for the cohesion, transmission, and integration of the upper and lower limbs. In other words, core training optimizes the transfer and overall control of motion and force to the terminal segment within athletic actions. Meanwhile, core training could increase stability and stiffness in the spine to reduce unrequired "energy leaks" and torso movement during the exertion of external loads. This mechanism could help athletes achieve better skill performance. Therefore, this review suggests that core training should be considered integrated into athletes' daily training routines. Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY2021100013].

5.
Front Public Health ; 10: 1046456, 2022.
Article in English | MEDLINE | ID: mdl-36684974

ABSTRACT

Aims: This study aims to present an in-depth review of the available literature on the effect of core training on skill-related physical fitness performance among soccer players, as well as to offer suggestions for researchers and coaches. Methods: The data in this study were presented based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Using scientific databases and web search engines including Scopus, Ebscohost, Web of Science, PubMed, and Google Scholar, researchers collected studies from the published literature. Only 26 of the 84 articles satisfied all the inclusion criteria and were thus included in the systematic review. The quality of each study was determined using the PEDro scale. The scores for 26 studies range between three and six. Results: Core training can improve soccer players' skill-related physical fitness, including their power, speed, balance, and agility. Conclusion: The core is the anatomic and functional center of the body as well as its "engine." All movements emanate from the center of the body and are transmitted to the extremities. The core muscles differ from the limb muscles because they frequently cocontract, thus making the torso hard to the point whereby all the muscles work together to become synergists. Theoretically, a strong core permits the passage of force from the lower body to the upper body with minimal energy loss in the torso. Based on the 26 studies, this review suggests that core training should be incorporated into the daily training sessions of soccer players, with a minimum frequency and length of 15 min per training session, twice per week, for 4 weeks. Systematic review registration: https://inplasy.com, identifier INPLASY202290045.


Subject(s)
Soccer , Physical Fitness/physiology , Soccer/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...