Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Am J Surg Pathol ; 47(9): 1011-1018, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37310016

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogenous group of tumors. Most TNBCs are high-grade aggressive tumors, but a minority of TNBCs are not high grade, with relatively indolent behavior and specific morphologic and molecular features. We performed a clinicopathologic and molecular assessment of 18 non-high-grade TNBCs with apocrine and/or histiocytoid features. All were grade I or II with low Ki-67 (≤20%). Thirteen (72%) showed apocrine features, and 5 (28%) showed histiocytoid and lobular features. In all, 17/18 expressed the androgen receptor, and 13/13 expressed gross cystic disease fluid protein 15. Four (22.2%) patients were treated with neoadjuvant chemotherapy, but none achieved a pathologic complete response. In all, 2/18 patients (11%) had lymph node metastasis at the time of surgery. None of the cases had a recurrence or disease-specific death, with an average follow-up time of 38 months. Thirteen cases were profiled by targeted capture-based next-generation DNA sequencing. Genomic alterations (GAs) were most significant for PI3K-PKB/Akt pathway (69%) genes, including PIK3R1 (23%), PIK3CA (38%), and PTEN (23%), and RTK-RAS pathway (62%) including FGFR4 (46%) and ERBB2 (15%). TP53 GA was seen in only 31% of patients. Our findings support those on high-grade TNBCs with apocrine and/or histiocytoid features as a clinicopathologic and genetically distinct subgroup of TNBC. They can be defined by features including tubule formation, rare mitosis, low Ki-67 (≤20%), triple-negative status, expression of androgen receptor and/or gross cystic disease fluid protein 15, and GA in the PI3K-PKB/Akt and/or RTK-RAS pathway. These tumors are not sensitive to chemotherapy but have favorable clinical behavior. Tumor subtype definitions are the first step to implementing future trial designs to select these patients.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/metabolism , Receptors, Androgen/genetics , Proto-Oncogene Proteins c-akt , Ki-67 Antigen , Phosphatidylinositol 3-Kinases , Biomarkers, Tumor/genetics
2.
Clin Cancer Res ; 29(9): 1719-1729, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36693175

ABSTRACT

PURPOSE: Clinical biomarkers to identify patients unlikely to benefit from CDK4/6 inhibition (CDK4/6i) in combination with endocrine therapy (ET) are lacking. We implemented a comprehensive circulating tumor DNA (ctDNA) analysis to identify genomic features for predicting and monitoring treatment resistance. EXPERIMENTAL DESIGN: ctDNA was isolated from 216 plasma samples collected from 51 patients with hormone receptor-positive (HR+)/HER2-negative (HER2-) metastatic breast cancer (MBC) on a phase II trial of palbociclib combined with letrozole or fulvestrant (NCT03007979). Boosted whole-exome sequencing (WES) was performed at baseline and clinical progression to evaluate genomic alterations, mutational signatures, and blood tumor mutational burden (bTMB). Low-pass whole-genome sequencing was performed at baseline and serial timepoints to assess blood copy-number burden (bCNB). RESULTS: High bTMB and bCNB were associated with lack of clinical benefit and significantly shorter progression-free survival (PFS) compared with patients with low bTMB or low bCNB (all P < 0.05). Dominant APOBEC signatures were detected at baseline exclusively in cases with high bTMB (5/13, 38.5%) versus low bTMB (0/37, 0%; P = 0.0006). Alterations in ESR1 were enriched in samples with high bTMB (P = 0.0005). There was a high correlation between bTMB determined by WES and bTMB determined using a 600-gene panel (R = 0.98). During serial monitoring, an increase in bCNB score preceded radiographic progression in 12 of 18 (66.7%) patients. CONCLUSIONS: Genomic complexity detected by noninvasive profiling of bTMB and bCNB predicted poor outcomes in patients treated with ET and CDK4/6i and identified early disease progression before imaging. Novel treatment strategies including immunotherapy-based combinations should be investigated in this population.


Subject(s)
Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Drug Resistance, Neoplasm/genetics , Fulvestrant/therapeutic use , Genomics , Letrozole/therapeutic use , Receptor, ErbB-2/genetics , Receptor, ErbB-2/therapeutic use , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics
3.
4.
Int J Biol Macromol ; 156: 1491-1502, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-31785299

ABSTRACT

An efficient ultrasonic disruption extraction (UDE) of polysaccharides from Armillariamellea (AM) were optimized by response surface methodology (RSM). Under optimum conditions: ultrasonic power 915.00 W, temperature 69.27 °C and time 39.13 min, the crude polysaccharides (AMPs) yield was 19.5%. Two purified fractions AMPs-1-1 and AMPs-2-1 were obtained through anion-exchange and gel chromatography. AMPs-1-1 was a heteropolysaccharide with average molecular weights of 1.23 × 105 Da, and composed of Glc, Gal and GlcA with mole percentages of 89.06%, 9.59% and 1.34%, respectively, owning a backbone structure of (1→)-ß-d-Glcp, (1 â†’ 3,6)-α-d-Glcp and (1 â†’ 3)-ß-d-Glcp residues. AMPs-2-1 was a heteropolysaccharide with average molecular weights of 6.76 × 104 Da, and composed of Glc, Gal, GlcA and Man with mole percentages of 65.28%, 22.87%, 2.87% and 8.98%, containing a main backbone chain of (1 â†’ 3,6)-α-d-Glcp and (1 â†’ 6)-ß-d-Glcp residues. AMPs-2-1 possessed obviously antioxidant activities in terms of stronger scavenging activity against DPPH· and ABTS+⋅, higher FRAP and ORAC value than AMPs-1-1. AMPs-2-1 could promote splenocyte lymphocytes and RAW264.7 macrophages proliferation and enhanced the phagocytosis of macrophages, exhibited significant immunomodulatory activities. These results suggested that UDE is an effective extract technology, and AMPs-2-1 could be explored as potential natural antioxidants and immunomodulatory agents.


Subject(s)
Armillaria/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Ultrasonic Waves , Animals , Carbohydrate Sequence , Cell Proliferation/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Fungal Polysaccharides/isolation & purification , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Immunologic Factors/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Phagocytosis/drug effects , RAW 264.7 Cells
5.
Nat Commun ; 9(1): 4257, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323172

ABSTRACT

Somatic mutations during stem cell division are responsible for several cancers. In principle, a similar process could occur during the intense cell proliferation accompanying human brain development, leading to the accumulation of regionally distributed foci of mutations. Using dual platform >5000-fold depth sequencing of 102 genes in 173 adult human brain samples, we detect and validate somatic mutations in 27 of 54 brains. Using a mathematical model of neurodevelopment and approximate Bayesian inference, we predict that macroscopic islands of pathologically mutated neurons are likely to be common in the general population. The detected mutation spectrum also includes DNMT3A and TET2 which are likely to have originated from blood cell lineages. Together, these findings establish developmental mutagenesis as a potential mechanism for neurodegenerative disorders, and provide a novel mechanism for the regional onset and focal pathology in sporadic cases.


Subject(s)
Brain/metabolism , Genetic Variation , Clone Cells , Genetic Association Studies , Genetic Predisposition to Disease , Genotyping Techniques , Humans , Mutation/genetics , Reproducibility of Results
7.
Nature ; 535(7611): 294-8, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27411634

ABSTRACT

Vascular and haematopoietic cells organize into specialized tissues during early embryogenesis to supply essential nutrients to all organs and thus play critical roles in development and disease. At the top of the haemato-vascular specification cascade lies cloche, a gene that when mutated in zebrafish leads to the striking phenotype of loss of most endothelial and haematopoietic cells and a significant increase in cardiomyocyte numbers. Although this mutant has been analysed extensively to investigate mesoderm diversification and differentiation and continues to be broadly used as a unique avascular model, the isolation of the cloche gene has been challenging due to its telomeric location. Here we used a deletion allele of cloche to identify several new cloche candidate genes within this genomic region, and systematically genome-edited each candidate. Through this comprehensive interrogation, we succeeded in isolating the cloche gene and discovered that it encodes a PAS-domain-containing bHLH transcription factor, and that it is expressed in a highly specific spatiotemporal pattern starting during late gastrulation. Gain-of-function experiments show that it can potently induce endothelial gene expression. Epistasis experiments reveal that it functions upstream of etv2 and tal1, the earliest expressed endothelial and haematopoietic transcription factor genes identified to date. A mammalian cloche orthologue can also rescue blood vessel formation in zebrafish cloche mutants, indicating a highly conserved role in vertebrate vasculogenesis and haematopoiesis. The identification of this master regulator of endothelial and haematopoietic fate enhances our understanding of early mesoderm diversification and may lead to improved protocols for the generation of endothelial and haematopoietic cells in vivo and in vitro.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Blood Cells/cytology , Blood Cells/metabolism , Cell Differentiation/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Zebrafish Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Blood Vessels/cytology , Blood Vessels/embryology , Blood Vessels/metabolism , Conserved Sequence , Epistasis, Genetic , Gene Deletion , Helix-Loop-Helix Motifs , Hematopoiesis , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Mutation , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1 , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
8.
Genome Med ; 7: 71, 2015.
Article in English | MEDLINE | ID: mdl-26269718

ABSTRACT

BACKGROUND: Whole exome sequencing is increasingly used for the clinical evaluation of genetic disease, yet the variation of coverage and sensitivity over medically relevant parts of the genome remains poorly understood. Several sequencing-based assays continue to provide coverage that is inadequate for clinical assessment. METHODS: Using sequence data obtained from the NA12878 reference sample and pre-defined lists of medically-relevant protein-coding and noncoding sequences, we compared the breadth and depth of coverage obtained among four commercial exome capture platforms and whole genome sequencing. In addition, we evaluated the performance of an augmented exome strategy, ACE, that extends coverage in medically relevant regions and enhances coverage in areas that are challenging to sequence. Leveraging reference call-sets, we also examined the effects of improved coverage on variant detection sensitivity. RESULTS: We observed coverage shortfalls with each of the conventional exome-capture and whole-genome platforms across several medically interpretable genes. These gaps included areas of the genome required for reporting recently established secondary findings (ACMG) and known disease-associated loci. The augmented exome strategy recovered many of these gaps, resulting in improved coverage in these areas. At clinically-relevant coverage levels (100 % bases covered at ≥20×), ACE improved coverage among genes in the medically interpretable genome (>90 % covered relative to 10-78 % with other platforms), the set of ACMG secondary finding genes (91 % covered relative to 4-75 % with other platforms) and a subset of variants known to be associated with human disease (99 % covered relative to 52-95 % with other platforms). Improved coverage translated into improvements in sensitivity, with ACE variant detection sensitivities (>97.5 % SNVs, >92.5 % InDels) exceeding that observed with conventional whole-exome and whole-genome platforms. CONCLUSIONS: Clinicians should consider analytical performance when making clinical assessments, given that even a few missed variants can lead to reporting false negative results. An augmented exome strategy provides a level of coverage not achievable with other platforms, thus addressing concerns regarding the lack of sensitivity in clinically important regions. In clinical applications where comprehensive coverage of medically interpretable areas of the genome requires higher localized sequencing depth, an augmented exome approach offers both cost and performance advantages over other sequencing-based tests.


Subject(s)
Exome , Sequence Analysis, DNA/methods , Genome, Human , Humans
9.
Mol Cell Biol ; 35(18): 3225-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26149387

ABSTRACT

LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/classification , Gene Expression Regulation, Neoplastic/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA-Binding Proteins/metabolism , Base Sequence , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Heterogeneous Nuclear Ribonucleoprotein A1 , Humans , MCF-7 Cells , Mammary Tumor Virus, Mouse/genetics , Microfilament Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Isoforms/biosynthesis , RNA Interference , RNA, Small Interfering , RNA-Binding Proteins/genetics , Sequence Analysis, DNA , Terminal Repeat Sequences/genetics
10.
Appl Opt ; 53(20): 4382-5, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25090056

ABSTRACT

A thulium-doped fiber laser employing a Sagnac loop mirror made by a 145.5 cm polarization-maintaining fiber is demonstrated, which can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860 nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The experimental results show that the output of the reported fiber laser with two different operation modes is rather stable at room temperature.

11.
Nat Methods ; 11(8): 809-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24973947

ABSTRACT

MicroRNAs are important negative regulators of protein-coding gene expression and have been studied intensively over the past years. Several measurement platforms have been developed to determine relative miRNA abundance in biological samples using different technologies such as small RNA sequencing, reverse transcription-quantitative PCR (RT-qPCR) and (microarray) hybridization. In this study, we systematically compared 12 commercially available platforms for analysis of microRNA expression. We measured an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples and synthetic spikes from microRNA family members with varying homology. We developed robust quality metrics to objectively assess platform performance in terms of reproducibility, sensitivity, accuracy, specificity and concordance of differential expression. The results indicate that each method has its strengths and weaknesses, which help to guide informed selection of a quantitative microRNA gene expression platform for particular study goals.


Subject(s)
MicroRNAs/genetics , Quality Control , Reproducibility of Results
12.
Am J Med Genet A ; 161A(8): 2040-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23824657

ABSTRACT

The transforming growth factor ß (TGF-ß) family of growth factors are key regulators of mammalian development and their dysregulation is implicated in human disease, notably, heritable vasculopathies including Marfan (MFS, OMIM #154700) and Loeys-Dietz syndromes (LDS, OMIM #609192). We described a syndrome presenting at birth with distal arthrogryposis, hypotonia, bifid uvula, a failure of normal post-natal muscle development but no evidence of vascular disease; some of these features overlap with MFS and LDS. A de novo mutation in TGFB3 was identified by exome sequencing. Several lines of evidence indicate the mutation is hypomorphic suggesting that decreased TGF-ß signaling from a loss of TGFB3 activity is likely responsible for the clinical phenotype. This is the first example of a mutation in the coding portion of TGFB3 implicated in a clinical syndrome suggesting TGFB3 is essential for both human palatogenesis and normal muscle growth.


Subject(s)
Arthrogryposis/genetics , Growth Disorders/genetics , Loeys-Dietz Syndrome/genetics , Marfan Syndrome/genetics , Muscle Weakness/genetics , Mutation/genetics , Transforming Growth Factor beta3/genetics , Adult , Animals , Arthrogryposis/diagnosis , Cells, Cultured , Child , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Female , Growth Disorders/diagnosis , Humans , Loeys-Dietz Syndrome/diagnosis , Male , Marfan Syndrome/diagnosis , Muscle Weakness/diagnosis , Phenotype , Signal Transduction , Transforming Growth Factor beta3/metabolism , Xenopus laevis/metabolism
13.
PLoS One ; 7(11): e49144, 2012.
Article in English | MEDLINE | ID: mdl-23145101

ABSTRACT

Circulating tumor cells (CTC) mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating , Prostatic Neoplasms , RNA, Messenger , Biomarkers, Tumor/blood , Cell Line, Tumor , Humans , Male , Metabolic Networks and Pathways , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prognosis , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/blood , RNA, Messenger/genetics , Sequence Alignment , Sequence Analysis, RNA
14.
Cell ; 150(4): 710-24, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22901804

ABSTRACT

The muscleblind-like (Mbnl) family of RNA-binding proteins plays important roles in muscle and eye development and in myotonic dystrophy (DM), in which expanded CUG or CCUG repeats functionally deplete Mbnl proteins. We identified transcriptome-wide functional and biophysical targets of Mbnl proteins in brain, heart, muscle, and myoblasts by using RNA-seq and CLIP-seq approaches. This analysis identified several hundred splicing events whose regulation depended on Mbnl function in a pattern indicating functional interchangeability between Mbnl1 and Mbnl2. A nucleotide resolution RNA map associated repression or activation of exon splicing with Mbnl binding near either 3' splice site or near the downstream 5' splice site, respectively. Transcriptomic analysis of subcellular compartments uncovered a global role for Mbnls in regulating localization of mRNAs in both mouse and Drosophila cells, and Mbnl-dependent translation and protein secretion were observed for a subset of mRNAs with Mbnl-dependent localization. These findings hold several new implications for DM pathogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Myotonic Dystrophy/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Transcriptome , 3' Untranslated Regions , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins , Drosophila melanogaster/metabolism , Exons , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Myoblasts/metabolism , Myotonic Dystrophy/genetics , Nuclear Proteins , Organ Specificity , RNA Splice Sites , RNA-Binding Proteins/genetics
15.
Blood ; 120(20): 4191-6, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22915640

ABSTRACT

Chronic lymphocytic leukemia is characterized by relapse after treatment and chemotherapy resistance. Similarly, in other malignancies leukemia cells accumulate mutations during growth, forming heterogeneous cell populations that are subject to Darwinian selection and may respond differentially to treatment. There is therefore a clinical need to monitor changes in the subclonal composition of cancers during disease progression. Here, we use whole-genome sequencing to track subclonal heterogeneity in 3 chronic lymphocytic leukemia patients subjected to repeated cycles of therapy. We reveal different somatic mutation profiles in each patient and use these to establish probable hierarchical patterns of subclonal evolution, to identify subclones that decline or expand over time, and to detect founder mutations. We show that clonal evolution patterns are heterogeneous in individual patients. We conclude that genome sequencing is a powerful and sensitive approach to monitor disease progression repeatedly at the molecular level. If applied to future clinical trials, this approach might eventually influence treatment strategies as a tool to individualize and direct cancer treatment.


Subject(s)
DNA, Neoplasm/genetics , Genome-Wide Association Study , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Sequence Analysis, DNA , Alleles , Cell Transformation, Neoplastic/genetics , Clonal Deletion , Clone Cells , DNA Mutational Analysis , Disease Progression , Evolution, Molecular , Gene Frequency , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology , Neoplasm Proteins/genetics , Selection, Genetic
16.
Front Genet ; 3: 124, 2012.
Article in English | MEDLINE | ID: mdl-22934102

ABSTRACT

Understanding brain function involves improved knowledge about how the genome specifies such a large diversity of neuronal types. Transcriptome analysis of single neurons has been previously described using gene expression microarrays. Using high-throughput transcriptome sequencing (RNA-Seq), we have developed a method to perform single-neuron RNA-Seq. Following electrophysiology recording from an individual neuron, total RNA was extracted by aspirating the cellular contents into a fine glass electrode tip. The mRNAs were reverse transcribed and amplified to construct a single-neuron cDNA library, and subsequently subjected to high-throughput sequencing. This approach was applied to both individual neurons cultured from embryonic mouse hippocampus, as well as neocortical neurons from live brain slices. We found that the average pairwise Spearman's rank correlation coefficient of gene expression level expressed as RPKM (reads per kilobase of transcript per million mapped reads) was 0.51 between five cultured neuronal cells, whereas the same measure between three cortical layer 5 neurons in situ was 0.25. The data suggest that there may be greater heterogeneity of the cortical neurons, as compared to neurons in vitro. The results demonstrate the technical feasibility and reproducibility of RNA-Seq in capturing a part of the transcriptome landscape of single neurons, and confirmed that morphologically identical neurons, even from the same region, have distinct gene expression patterns.

17.
Nat Biotechnol ; 30(8): 777-82, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22820318

ABSTRACT

Genome-wide transcriptome analyses are routinely used to monitor tissue-, disease- and cell type­specific gene expression, but it has been technically challenging to generate expression profiles from single cells. Here we describe a robust mRNA-Seq protocol (Smart-Seq) that is applicable down to single cell levels. Compared with existing methods, Smart-Seq has improved read coverage across transcripts, which enhances detailed analyses of alternative transcript isoforms and identification of single-nucleotide polymorphisms. We determined the sensitivity and quantitative accuracy of Smart-Seq for single-cell transcriptomics by evaluating it on total RNA dilution series. We found that although gene expression estimates from single cells have increased noise, hundreds of differentially expressed genes could be identified using few cells per cell type. Applying Smart-Seq to circulating tumor cells from melanomas, we identified distinct gene expression patterns, including candidate biomarkers for melanoma circulating tumor cells. Our protocol will be useful for addressing fundamental biological problems requiring genome-wide transcriptome profiling in rare cells.


Subject(s)
Gene Expression Profiling/methods , Neoplastic Cells, Circulating/metabolism , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/chemistry , Sequence Analysis, RNA/methods , Animals , Cluster Analysis , Female , Gene Library , Humans , Melanoma/blood , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Neoplastic Cells, Circulating/chemistry , Neoplastic Cells, Circulating/pathology , RNA, Messenger/genetics , Sensitivity and Specificity
18.
Cancer Lett ; 325(2): 165-74, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-22771536

ABSTRACT

We performed next generation sequencing- and microarray-based gene expression profiling of CD44(+)/CD24(-)/CD45(-) breast CSCs (cancer stem cells) isolated from primary ERα-positive breast cancer. By combining semi-automated dissociation of human tumor tissue, magnetic cell sorting and cDNA amplification less than 500 CSCs were required for transcriptome analyses. Besides overexpressing genes involved in maintenance of stemness, the CSCs showed higher levels of genes that drive the PI3K pathway, including EGFR, HB-EGF, PDGFRA/B, PDGF, MET, PIK3CA, PIK3R1 and PIK3R2. This suggests that, in CSCs of ERα-positive breast cancer, the PI3K pathway which is involved in endocrine resistance is hyperactive.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Estrogens , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/physiology , Neoplasms, Hormone-Dependent/pathology , Nucleic Acid Amplification Techniques/methods , Phosphatidylinositol 3-Kinases/physiology , Breast Neoplasms/enzymology , CD24 Antigen/analysis , Carcinoma, Ductal, Breast/enzymology , Estrogen Receptor alpha/analysis , Female , Humans , Hyaluronan Receptors/analysis , Immunomagnetic Separation , Immunophenotyping , Isoenzymes/physiology , Neoplasm Proteins/genetics , Neoplasms, Hormone-Dependent/enzymology , Neoplastic Stem Cells/chemistry , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Sensitivity and Specificity , Transcriptome
19.
Cell ; 148(4): 780-91, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341448

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Subject(s)
Facial Neoplasms/veterinary , Genomic Instability , Marsupialia/genetics , Mutation , Animals , Clonal Evolution , Endangered Species , Facial Neoplasms/epidemiology , Facial Neoplasms/genetics , Facial Neoplasms/pathology , Female , Genome-Wide Association Study , Male , Molecular Sequence Data , Tasmania/epidemiology
20.
Methods Mol Biol ; 822: 183-8, 2012.
Article in English | MEDLINE | ID: mdl-22144199

ABSTRACT

Direct sequencing of RNA molecules using next-generation sequencing (NGS) technology has revolutionized the analysis of transcriptome with its massively parallel throughput and low cost. Here, we describe Illumina's microRNA-Seq, a method for sequencing microRNA using the Illumina Genome Analyzer system. The sequence data generated from this method enables direct identifying and profiling of microRNAs in any given organism. It also sheds light in understanding the biogenesis and modification of microRNA.


Subject(s)
Gene Expression Profiling/methods , MicroRNAs/analysis , Sequence Analysis, RNA/methods , Gene Expression Profiling/instrumentation , Sequence Analysis, RNA/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...