Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 23(9): 4908-4924, 2021 09.
Article in English | MEDLINE | ID: mdl-33432709

ABSTRACT

Genomic data have identified a class of fungal specific transcription factors (FsTFs) that are thought to regulate unique aspects of fungal gene expression, although the functions of many of these proteins remain unknown. Here, a novel FsTF (BbStf1), which features a leucine zipper dimerization domain and a fungal transcription factor regulatory middle homology region, was characterized in Beauveria bassiana, a filamentous insect fungal pathogen. Transcriptional activation and nuclear localization were experimentally confirmed for BbStf1. Disruption of Bbstf1 resulted in increased tolerance to oxidative stress and cell wall perturbation, accompanied by increased peroxidase (POD) and superoxide dismutase (SOD) activities and ratio of reduced/oxidized glutathione (GSH/GSSG), and by thickened cell wall and altered composition. Gene expression profile analysis revealed that transcription patterns of antioxidant enzyme and cell wall integrity-involved genes were altered in the ∆Bbstf1, including some BbStf1-targeted genes clarified with evidence. The ∆Bbstf1 strain displayed greater virulence to Galleria mellonella in the bioassays through both topical infection and intrahaemocoel injection due to more rapid proliferation in the haemocoel as compared to the wild-type strain. Altogether, BbStf1 acts as a negative regulator of antioxidant response, cell wall integrity and virulence in B. bassiana.


Subject(s)
Beauveria , Fungal Proteins , Transcription Factors , Animals , Antioxidants/metabolism , Beauveria/genetics , Beauveria/pathogenicity , Cell Wall , Fungal Proteins/genetics , Insecta , Spores, Fungal , Transcription Factors/genetics , Virulence
2.
Fungal Genet Biol ; 111: 7-15, 2018 02.
Article in English | MEDLINE | ID: mdl-29305969

ABSTRACT

The aldo-keto reductases (AKRs) belong to the NADP-dependent oxidoreductase superfamily, which play important roles in various physiological functions in prokaryotic and eukaryotic organisms. However, many AKR superfamily members remain uncharacterized. Here, a downstream target gene of the HOG1 MAPK pathways coding for an aldo-keto reductase, named Bbakr1, was characterized in the insect fungal pathogen, Beauveria bassiana. Bbakr1 expression increased in response to osmotic and salt stressors, and oxidative and heavy metal (chromium) stress. Deletion of Bbakr1 caused a reduction in conidiation, as well as delayed conidial germination. ΔBbakr1 displayed increased sensitivity to osmotic/high-salt stress with decreased compatible solute accumulation. In addition, the mutant was more sensitive to high concentrations of the heavy metal, chromium, and to oxidative stress than the wild type cells, with impaired ability to detoxify active aldehyde that might accumulate due to lipid peroxidation. However, over-expressing Bbakr1 in either the wild type strain or a ΔBbhog1 background did not cause any obvious changes in phenotypes as compared to their controls. Little effect on virulence was seen for either the ΔBbakr1 or overexpression strains in insect bioassays via cuticle infection or intrahemocoel injection assays, suggesting that Bbakr1 is not required for virulence.


Subject(s)
Aldo-Keto Reductases/metabolism , Beauveria/enzymology , Chromium/metabolism , Aldo-Keto Reductases/genetics , Animals , Beauveria/genetics , Beauveria/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Inactivation, Metabolic , MAP Kinase Signaling System , Moths/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Stress, Physiological/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...