Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Plant Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687907

ABSTRACT

Blackleg and soft rot are harmful diseases in potato (Solanum tuberosum) caused by Pectobacterium spp. and Dickeya spp. (Czajkowski et al. 2015). The occurrence of potato blackleg was serious in potato-producing areas around Xiapu County in Fujian Province, China, in 2021 (6 ha) and 2022 (7 ha), with an incidence of approximately 5%, which reached nearly 23%. Three diseased plants were collected to isolate the pathogen. Single colonies from each sampled plant were isolated and streaked onto fresh plates. DNA from three colonies from different plants was PCR amplified with primer pair 27F/1492R (Lane 1991) for the 16S rRNA gene. Since the sequences were identical, we selected strain M2-3 for further analysis. The strain M2-3 was gram-negative, pectolytic on CVP, grew at 37°C and 5% NaCl. The bacterium was positive for phosphatase activity, erythromycin sensitivity, indole production, gelatin liquefaction, malonic utilization, and acid production from, melibiose, raffinose, and arabinose. The bacterium was negative for sucrose, α-methyl glucoside, sorbitol, trehalose, lactose, and sodium citrate (Fujimoto et al. 2018;),although sucrose and lactose did not provide the expected results, there are exception in all species. The genome of strain M2-3 was sequenced and deposited in the NCBI database under accession numbers: CP077422. An Average Nucleotide Identity (ANI) analysis showed that M2-3 clustered with other D. dadantii strains and has a 98.39% identity with D. dadantii strain DSM 18020 (CP023467). The housekeeping genes (recA, dnaX, acnA, gapA, icd, mdh, mtlD and pgi) were amplified with primer pairs designed previously(Fujimoto et al. 2018; Ma et al. 2007) and sequenced. A multilocus sequence analysis (MLSA) was performed by concatenating the 8 gene sequences and constructing a maximum likelihood phylogenetic tree using PhyloSuite version 1.2.1 (Zhang et al. 2020) and IQ-tree version 1.6.8 (Nguyen et al. 2015) software. Strain M2-3 was clustered together with Dickeya dadantii. For the pathogenicity test, three plants per treatment, totaling nine plants, were used. Bacterial suspensions (1×10^8 CFU/mL) were made in a 10mM PBS buffer. 10 µL of M2-3, D. dadantii type strain 18020 (positive control), and buffer (negative control) were injected into the plant stems near the base. Water stains appeared at the site of inoculation after 2 days and they gradually became black and rotten. The leaves became yellow and wilted, and the petiole base rotted within 5 days of inoculation completing the Koch postulate. According to average nucleotide identity and housekeeping gene sequence analysis, strain M2-3 was identified as Dickeya dadantii. Previous studies have reported several pathogens that cause potato blackleg in China, including P. atrosepticum, P. carotovorum, P. brasiliense, P. parmentieri, P. polaris, and P. punjabense (Li-ping et al. 2020; Wang et al. 2021). To the best of our knowledge, this study is the first to report potato blackleg disease caused by Dickeya dadantii in Fujian Province, China. This finding suggests that this pathogen may cause a threat to potato production in Fujian Province.

2.
Heliyon ; 10(7): e28444, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560205

ABSTRACT

Popliteal cysts, also termed Baker's cysts, are clinically common cystic lesions in the popliteal fossa. Typically, the contents of a ruptured cyst tend to spread into the myofascial interfaces in any direction, most commonly inferomedially or into a palpable superficial position. However, to our knowledge, reports of Baker's cysts dissecting into the deep intermuscular septum of the lower calf are extremely rare. We present here the details of the successful treatment through arthroscopy combined with lower calf incision of a patient who sustained hematoma of the knee and lower calf secondary to Baker's cyst rupture. Given the rarity of this disease in China, we present this case report to improve our understanding of the disease and avoid misdiagnosis and provide evidence for its clinical treatment, management, and prognosis.

3.
Redox Biol ; 72: 103129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574433

ABSTRACT

AIMS: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function. Therefore, the objective of this study was to examine the efficacy of semaglutide in ameliorating doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: Doxorubicin-induced cardiotoxicity is an established model to study cardiac function. Cardiac function was studied by transthoracic echocardiography and invasive hemodynamic monitoring. The results showed that semaglutide significantly ameliorated doxorubicin-induced cardiac dysfunction. RNA sequencing suggested that Bnip3 is the candidate gene that impaired the protective effect of semaglutide in doxorubicin-induced cardiotoxicity. To determine the role of BNIP3 on the effect of semaglutide in doxorubicin-induced cardiotoxicity, BNIP3 with adeno-associated virus serotype 9 (AAV9) expressing cardiac troponin T (cTnT) promoter was injected into tail vein of C57/BL6J mice to overexpress BNIP3, specifically in the heart. Overexpression of BNIP3 prevented the improvement in cardiac function caused by semaglutide. In vitro experiments showed that semaglutide, via PI3K/AKT pathway, reduced BNIP3 expression in the mitochondria, improving mitochondrial function. CONCLUSION: Semaglutide ameliorates doxorubicin-induced mitochondrial and cardiac dysfunction via PI3K/AKT pathway, by reducing BNIP3 expression in mitochondria. The improvement in mitochondrial function reduces doxorubicin-mediated cardiac injury and improves cardiac function. Therefore, semaglutide is a potential therapy to reduce doxorubicin-induced acute cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Glucagon-Like Peptides , Membrane Proteins , Animals , Mice , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Glucagon-Like Peptides/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Humans
4.
Small Methods ; : e2301645, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607956

ABSTRACT

Bimetallic phosphides are considered as promising electrocatalysts for zinc-air batteries toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). To address the semi-conductor inherent low electronic conductivity and catalytic activity, a polymetal-chelated strategy is employed to in situ fabricate bimetallic nanophosphides within carbon matrix anchoring by chemical bonding. The employment of biomolecule polydopamine (PDA) efficiently anchors various transition metal ions due to its strong chelating capability via inherent functional groups. Furthermore, the chelation of multi-metal ion is proved to promote the formation of graphitic nitrogen. The bimetallic FexCoyP phosphides nanoparticles are intimately encapsulated in carbon matrix through in situ carbonization and phosphatization processes. When utilized in Zinc-air batteries, Fe0.20Co0.80P anchored within N, P co-doped sub-microsphere (Fe0.20Co0.80P /PNC) exhibit a maximum power density of 167 mW cm-2 and cycle life up to 270 cycles, with a round-trip voltage of 0.955 V. The mechanisms for catalytic activity passivation are ascribed to the etching of nitrogen and oxidation of phosphorus in carbon matrix, as well as the oxidation of the surface phosphide on the sub-microspheres. This study presents a promising candidate for advancing the further development of energy conversation catalysis.

5.
Small ; : e2400252, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461522

ABSTRACT

Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K+ re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O6 octahedra are introduced into P3-K0.45 MnO2 herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO6 ] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO6 ] octahedra. This distortion compresses the [MnO6 ] octahedra along the c-axis, leading to an increased interlayer spacing in the K+ layer. Meanwhile, the Mn3+ /Mn4+ is balanced by [CoO6 ] octahedra and the K+ diffusion pathway is optimized as well. The proposed P3-K0.45 Mn0.9 Co0.05 Mo0.05 O2 cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g-1 at 100 mAh g-1 and 77.3 mAh g-1 at 500 mAh g-1 . Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.

6.
Adv Sci (Weinh) ; 11(15): e2308979, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345238

ABSTRACT

Ammonia, a vital component in the synthesis of fertilizers, plastics, and explosives, is traditionally produced via the energy-intensive and environmentally detrimental Haber-Bosch process. Given its considerable energy consumption and significant greenhouse gas emissions, there is a growing shift toward electrocatalytic ammonia synthesis as an eco-friendly alternative. However, developing efficient electrocatalysts capable of achieving high selectivity, Faraday efficiency, and yield under ambient conditions remains a significant challenge. This review delves into the decades-long research into electrocatalytic ammonia synthesis, highlighting the evolution of fundamental principles, theoretical descriptors, and reaction mechanisms. An in-depth analysis of the nitrogen reduction reaction (NRR) and nitrate reduction reaction (NitRR) is provided, with a focus on their electrocatalysts. Additionally, the theories behind electrocatalyst design for ammonia synthesis are examined, including the Gibbs free energy approach, Sabatier principle, d-band center theory, and orbital spin states. The review culminates in a comprehensive overview of the current challenges and prospective future directions in electrocatalyst development for NRR and NitRR, paving the way for more sustainable methods of ammonia production.

7.
Sci Rep ; 14(1): 4547, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402284

ABSTRACT

The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.


Subject(s)
Genome, Chloroplast , Genome, Mitochondrial , Ipomoea batatas , Ipomoea , Ipomoea batatas/genetics , Phylogeny , Genome, Mitochondrial/genetics , Ipomoea/genetics , Genome, Chloroplast/genetics , Chloroplasts/genetics , Amino Acids/genetics , RNA, Transfer/genetics
8.
Small ; 20(20): e2308212, 2024 May.
Article in English | MEDLINE | ID: mdl-38100280

ABSTRACT

The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .

9.
Int J Biol Macromol ; 257(Pt 2): 128745, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101673

ABSTRACT

The commercial graphene for Li ion batteries (LIBs) has high cost and low capacity. Therefore, it is necessary to develop a novel carbon anode. The cellulose nanowires (CNWs), which has advantages of low cost, high carbon content, is thought as a good carbon precursor. However, direct carbonization of CNWs leads to low surface area and less mesopores due to its easy aggregation. Herein, the metal-organic frameworks (MOFs) have been explored as templates to prepare porous carbon due to their 3D open pore structures. The porous carbon was developed with the coordination effect of CNWs and MOFs. The precursor of MOFs coordinates with the -OH and - COOH groups in the CNWs to provide stable structure. And the MOFs was grown in situ on CNWs to reduce aggregation and provide higher porosity. The results show that the porous carbon has high specific capacity and fast Li+/electronic conductivity. As anode for LIBs, it displays 698 mAh g-1 and the capacity retention is 85 % after 200 cycles. When using in the full-battery system, it exhibits energy density of 480 Wh kg-1, suggesting good application value. This work provides a low-cost method to synthesize porous carbon with fast Li+/electronic conductivity for high-performance LIBs.


Subject(s)
Carbon , Metal-Organic Frameworks , Porosity , Ions , Cellulose , Electrodes , Lithium
10.
Article in English | MEDLINE | ID: mdl-38018817

ABSTRACT

Manganese (Mn)-based layer-structured transition metal oxides are considered as excellent cathode materials for potassium ion batteries (KIBs) owing to their low theoretical cost and high voltage plateau. The energy density and cycling lifetime, however, cannot simultaneously satisfy the basic requirements of the market for energy storage systems. One of the primary causes results from the complex structural transformation and transition metal migration during the ion intercalation and deintercalation process. The orbital and electronic structure of the octahedral center metal element plays an important role for maintaining the octahedral structural integrity and improving the K+ diffusivity by the introduced heterogeneous [Me-O] chemical bonding. A multitransition metal oxide, P3-type K0.5Mn0.85Co0.05Fe0.05Al0.05O2 (KMCFAO), was synthesized and employed as a cathode material for KIBs. Beneficial from the larger layer spacing for K+ to better accommodate and effectively preventing the irreversible structural transformation in the insertion/extraction process, it can reach a superior capacity retention up to 96.8% after 300 cycles at a current density of 500 mA g-1. The full cell of KMCFAO//hard carbon exhibits an encouraging promising energy density of 113.8 W h kg-1 at 100 mA g-1 and a capacity retention of 72.6% for 500 cycles.

11.
J Magn Reson Imaging ; 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38006286

ABSTRACT

BACKGROUND: Previous studies have used different imaging sequences and different enhanced phases for breast lesion calsification in radiomics. The optimal sequence and contrast enhanced phase is unclear. PURPOSE: To identify the optimal magnetic resonance imaging (MRI) radiomics model for lesion clarification, and to simulate its incremental value for multiparametric MRI (mpMRI)-guided biopsy. STUDY TYPE: Retrospective. POPULATION: 329 female patients (138 malignant, 191 benign), divided into a training set (first site, n = 192) and an independent test set (second site, n = 137). FIELD STRENGTH/SEQUENCE: 3.0-T, fast spoiled gradient-echo and fast spin-echo T1-weighted imaging (T1WI), fast spin-echo T2-weighted imaging (T2WI), echo-planar diffusion-weighted imaging (DWI), and fast spoiled gradient-echo contrast-enhanced MRI (CE-MRI). ASSESSMENT: Two breast radiologists with 3 and 10 years' experience developed radiomics model on CE-MRI, CE-MRI + DWI, CE-MRI + DWI + T2WI, CE-MRI + DWI + T2WI + T1WI at each individual phase (P) and for multiple combinations of phases. The optimal radiomics model (Rad-score) was identified as having the highest area under the receiver operating characteristic curve (AUC) in the test set. Specificity was compared between a traditional mpMRI model and an integrated model (mpMRI + Rad-score) at sensitivity >98%. STATISTICAL TESTS: Wilcoxon paired-samples signed rank test, Delong test, McNemar test. Significance level was 0.05 and Bonferroni method was used for multiple comparisons (P = 0.007, 0.05/7). RESULTS: For radiomics models, CE-MRI/P3 + DWI + T2WI achieved the highest performance in the test set (AUC = 0.888, 95% confidence interval: 0.833-0.944). The integrated model had significantly higher specificity (55.3%) than the mpMRI model (31.6%) in the test set with a sensitivity of 98.4%. DATA CONCLUSION: The CE-MRI/P3 + DWI + T2WI model is the optimized choice for breast lesion classification in radiomics, and has potential to reduce benign biopsies (100%-specificity) from 68.4% to 44.7% while retaining sensitivity >98%. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

12.
Sensors (Basel) ; 23(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765939

ABSTRACT

Due to the environmental protection of electric buses, they are gradually replacing traditional fuel buses. Several previous studies have found that accidents related to electric vehicles are linked to Unintended Acceleration (UA), which is mostly caused by the driver pressing the wrong pedal. Therefore, this study proposed a Model for Detecting Pedal Misapplication in Electric Buses (MDPMEB). In this work, natural driving experiments for urban electric buses and pedal misapplication simulation experiments were carried out in a closed field; furthermore, a phase space reconstruction method was introduced, based on chaos theory, to map sequence data to a high-dimensional space in order to produce normal braking and pedal misapplication image datasets. Based on these findings, a modified Swin Transformer network was built. To prevent the model from overfitting when considering small sample data and to improve the generalization ability of the model, it was pre-trained using a publicly available dataset; moreover, the weights of the prior knowledge model were loaded into the model for training. The proposed model was also compared to machine learning and Convolutional Neural Networks (CNN) algorithms. This study showed that this model was able to detect normal braking and pedal misapplication behavior accurately and quickly, and the accuracy rate on the test dataset is 97.58%, which is 9.17% and 4.5% higher than the machine learning algorithm and CNN algorithm, respectively.

13.
Clin Sci (Lond) ; 137(17): 1391-1407, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37622333

ABSTRACT

Exercise has been recommended as a nonpharmaceutical therapy to treat insulin resistance (IR). Previous studies showed that dopamine D1-like receptor agonists, such as fenoldopam, could improve peripheral insulin sensitivity, while antipsychotics, which are dopamine receptor antagonists, increased susceptibility to Type 2 diabetes mellitus (T2DM). Meanwhile, exercise has been proved to stimulate dopamine receptors. However, whether the dopamine D1 receptor (D1R) is involved in exercise-mediated amelioration of IR remains unclear. We found that the D1-like receptor antagonist, SCH23390, reduced the effect of exercise on lowering blood glucose and insulin in insulin-resistant mice and inhibited the contraction-induced glucose uptake in C2C12 myotubes. Similarly, the opposite was true for the D1-like receptor agonist, fenoldopam. Furthermore, the expression of D1R was decreased in skeletal muscles from streptozotocin (STZ)- and high-fat intake-induced T2DM mice, accompanied by increased D1R phosphorylation, which was reversed by exercise. A screening study showed that G protein-coupled receptor kinase 4 (GRK4) may be the candidate kinase for the regulation of D1R function, because, in addition to the increased GRK4 expression in skeletal muscles of T2DM mice, GRK4 transgenic T2DM mice exhibited lower insulin sensitivity, accompanied by higher D1R phosphorylation than control mice, whereas the AAV9-shGRK4 mice were much more sensitive to insulin than AAV9-null mice. Mechanistically, the up-regulation of GRK4 expression caused by increased reactive oxygen species (ROS) in IR was ascribed to the enhanced expression of c-Myc, a transcriptional factor of GRK4. Taken together, the present study shows that exercise, via regulation of ROS/c-Myc/GRK4 pathway, ameliorates D1R dysfunction and improves insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Fenoldopam , Insulin , Muscle, Skeletal , Reactive Oxygen Species , Receptors, Dopamine D1/genetics
14.
ACS Appl Mater Interfaces ; 15(31): 37433-37441, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37489932

ABSTRACT

We report a low-cost, high theoretical specific capacity π-conjugated organic compound (PTCDA) with C═O active centers as the cathode material in aluminum organic batteries. In addition, in order to improve the electron transport rate of PTCDA, a new method is proposed in this paper, which uses physical vapor deposition (PVD) method to make PTCDA recrystallize and grow on stainless steel and quartz glass substrates to improve its crystallinity. The increase of crystallinity expands the PTCDA π-π-conjugated system, making electrons more delocalized, which is beneficial to the transmission rate of electrons and ions, thereby enhancing the conductivity of the material. The experimental results show that compared with pristine PTCDA, PTCDA(Ss) and PTCDA(G) with higher crystallinity have better cycling stability and rate capability. The DFT (density functional theory) results indicated that the electron-deficient carbonyl group in the PTCDA molecule could reversibly coordinate/dissociate with the positively charged Al complex ions (AlCl2+). This research work provides insights into the rational design of low-dimensional, high-crystallinity, high-performance cathode materials for green aluminum organic batteries.

15.
Technol Health Care ; 31(S1): 525-532, 2023.
Article in English | MEDLINE | ID: mdl-37066948

ABSTRACT

BACKGROUND: Diffusion-weighted magnetic resonance imaging (DWI) is a mature scanning technique. With high sensitivity in detecting cerebral infractions, it has become an essential part of the clinical evaluation of acute stroke. However, with the update in medical ideals and treatment, clinicians are now focusing on distinguishing between reversible and irreversible brain tissue damage rather than detecting ischaemic lesions alone. OBJECTIVE: We supposed that Diffusion Kurtosis Imaging (DKI) could classify heterogeneous DWI lesions, deepening the understanding of tissue injury. We systematically studied the different parameters of DKI in acute stroke patients in the literature. METHODS: We collected 41 patients (26 male, 15 female), including different infarctions with acute cerebral infarction in different brain regions. Of all patients, 20 were single-infarction, while others were multi-infarctions. In this paper, we categorized acute cerebral infarction lesions into two types according to the parametric characteristics of both DKI and DWI. Type I means the DKI and DWI were matched, and Type II means the DKI and DWI were mismatched. Based on each parametric map, the region of interest (ROI) is outlined in each most severe lesion area (as large as possible in the center of the lesion). In the control group, ROIs of the same size are located in the corresponding regions of the contralateral hemisphere. RESULTS: In both Type I and Type II, all parameters conform to a normal distribution. An independent sample T-test was used to compare the differences between each group. In Type I, we found the FA, MD, Da, Dr, MK and Ka values were statistically different (P< 0.05), while in Type II, only the MK and Ka values were statistically different (P< 0.05). CONCLUSION: DKI, compared to DWI, can provide more imaging information about intracranial ischemic infarction, which can deepen the understanding of the mechanism of ischemic tissue damage. Our classification of the brain acute stroke lesions by DKI parameters and DWI may help us rediscover the real core of infraction.


Subject(s)
Brain Ischemia , Cerebral Infarction , Stroke , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Sensitivity and Specificity , Stroke/diagnostic imaging , Stroke/pathology
16.
J Colloid Interface Sci ; 639: 124-132, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36804785

ABSTRACT

Advances in cathode material design and understanding of intercalation mechanisms are necessary to improve the overall performance of aluminum ion batteries. Therefore, we designed ZnSe/SnSe2 hollow microcubes with heterojunction structure as a cathode material for aluminum ion batteries. ZnSe/SnSe2 hollow microcubes with an average size of about1.4 µm were prepared by selenization of ZnSn(OH)6 microcubes successfully. The shell thickness of ZnSe/SnSe2 hollow microcubes is about 250 nm. On one hand, the hollow cubic structure can effectively alleviate the volume effect, provide shorter ion diffusion paths, and increase the contact area with the electrolyte. On the other hand, ZnSe/SnSe2 heterojunction structure can establish a built-in electric field to facilitate ion transport. The synergistic effect of the two leads to the improved electrochemical performance of ZnSe/SnSe2 as the cathode of aluminum ion batteries. The material delivered a reversible capacity of 124 mAh/g after 150 cycles at a current density of 100 mA/g. Meanwhile, coulombic efficiency remained above 98% in almost all cycles. In addition, the electrochemical reaction mechanism and kinetic process of Al3+ and ZnSe/SnSe2 were studied.

17.
Plant Dis ; 107(7): 2201-2204, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36510425

ABSTRACT

The Pectobacterium pathogens cause soft rot and blackleg diseases on many plants and crops, including potatoes. Here, we first report a high-quality genome assembly and announcement of the P. polaris strain QK413-1, which causes blackleg disease in potatoes in China. The QK413-1 genome was sequenced and assembled using the PacBio Sequel II and Illumina sequencing platform. The assembled genome has a total size of 5,005,507 bp with a GC content of 51.81%, encoding 4,782 open reading frames, including 639 virulence genes, 273 drug resistance genes, and 416 secreted proteins. The QK413-1 genome sequence provides a valuable resource for the control of potato blackleg and research into its mechanism.


Subject(s)
Pectobacterium , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Pectobacterium/genetics , Plants
18.
Front Endocrinol (Lausanne) ; 13: 1047927, 2022.
Article in English | MEDLINE | ID: mdl-36568072

ABSTRACT

Background: Insulin resistance is associated with atrial remodeling as well as atrial fibrillation (AF). However, there was limited evidence on the relationship of triglyceride-glucose index (TyG) index, a simple, valuable marker of insulin resistance, with AF. Thus, we aimed to investigate the association between TyG index and AF among hospitalized patients. Methods: A retrospective observational study was conducted in Daping Hospital, which included 356 hospitalized patients from the Department of Cardiology. Clinical and biochemical parameters were collected from electronic medical records and AF was diagnosed from electrocardiogram (ECG) findings. Results: We found that the TyG index was significantly higher in the AF group than in the group without AF. Multivariate logistic regression revealed that hypertension (OR = 1.756, 95%CI 1.135-2.717, P = 0.011) and TyG index (OR = 2.092, 95%CI 1.412-3.100, P<0.001) were positively associated with AF. The analysis of the area under the ROC curve was performed and revealed that area under curve (AUC) of TyG index was 0.600 (95%CI, 0.542-0.659, P = 0.001), the optimal critical value was 8.35, the sensitivity was 65.4%, and the specificity was 52.0%. Additional subgroup analyses of diabetic and non-diabetic subjects were also performed and found the TyG index was increased in non-diabetic subjects with AF. Furthermore, a logistic regression analysis showed TyG index was associated with AF (OR = 3.065, 95% CI, 1.819-5.166, P<0.001) in non-diabetic subjects. However, TyG index was not associated with AF in diabetic subjects. Conclusion: Elevated TyG index is an independent risk factor for AF among non-diabetic hospitalized patients.


Subject(s)
Atrial Fibrillation , Insulin Resistance , Humans , Glucose , Triglycerides , Blood Glucose/analysis , Atrial Fibrillation/etiology , Biomarkers
19.
ACS Appl Mater Interfaces ; 14(48): 53702-53710, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36413483

ABSTRACT

Aluminum batteries (ABs) have triggered increasing interest due to the geochemically abundant aluminum, high theoretical energy density, and excellent safety characteristics. Organic materials with engineered active groups have the advantages of low cost, flexible structural design, and benignity to the environment. Herein, we report an appropriately heat treated aromatic carbonyl derivative PTCDA/500 °C as an organic cathode material for ABs. The constructed aluminum organic batteries exhibited excellent cycling stability, with a capacity retention rate of 91% (111 mAh/g) after 200 cycles at a current density of 1000 mA/g and also displayed the more excellent rate capability at different current densities. In addition, the electrochemical reaction mechanism of AlCl2+ and PTCDA was studied based on density functional theory (DFT) as well as the ion diffusion behavior on the electrode surface being probed. The research results provide new ideas for the development of green and sustainable aluminum organic batteries.

20.
Mater Horiz ; 9(11): 2722-2751, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36196916

ABSTRACT

In the past several years, rechargeable zinc batteries, featuring the merits of low cost, environmental friendliness, easy manufacturing, and enhanced safety, have, attracted much attention. Zinc (Zn) anodes for zinc metal batteries play an important role. In this review, the fundamental understanding of these batteries and modification strategies to deal with the problematic issues for Zn anodes, including dendrite growth, corrosion, and the hydrogen evolution phenomenon will be summarized. The practical application of Zn anodes can still lead to Zn dendrites, various side reactions, and serious safety risks. Therefore, metal-free anodes for "rocking chair" zinc ion batteries to replace Zn anodes are systemically reviewed. The performance and the zinc storage mechanism of metal-free anodes will be discussed. Subsequently, a "rocking chair" zinc ion battery prototype selected as a recent example is assessed to explore the merits and demerits of Zn anodes and metal-free anodes. To conclude, a perspective on the future of zinc metal batteries and "rocking chair" zinc ion batteries is presented. It is hoped that this review may provide for further improvement of commercial rechargeable zinc batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...