Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 25(2): 161-171, 2023.
Article in English | MEDLINE | ID: mdl-35575119

ABSTRACT

Arsenic and cadmium pose a potential health risk to human beings via rice grain consumption. In the current study, a pot experiment was conducted to evaluate the effect of Br (5 mM and 20 mM) and Se (1 mM) at rice tillering and filling stages on Cd and As accumulation in rice grain and their health risk indices. The results showed that Br or Se applications at different stages of rice improved the photosynthesis, reduce MDA content in flag leaves by 17.41%-38.65%, increased rice biomass and grain yield by 10.50%-29.94% and 10.50%-36.56%, and enhanced grain N and P uptake by 3.25%-34.90%, and 22.98%-72.05%, respectively. Applications of Br and Se effectively decreased Cd and As concentration in rice grain by 31.74%-86.97% and 16.42%-81.13% respectively. Compared to the individual treatment, combined 20 mM Br and 1 mM Se at the filling stage showed the lowest accumulation of As (0.149 mg·kg-1) and Cd (0.105 mg·kg-1) in grain, and its health risk index was below the acceptable limits (HRI < 1). This implies that application of Br and Se at the filling stage is a promising strategy for the safe production of rice in As and Cd co-contaminated regions.


In this study, foliar applications of Br and Se at the grain filling and tillering stage demonstrate their effect on As and Cd accumulation. The findings showed that Br and Se resulted in the Se concentration in grains reaching the Se-enriched level, and the accumulation of As and Cd was the lowest. Furthermore, the application of Br and Se decreased lipid peroxidation, promoted N and P uptake, and increased the rate of photosynthesis in the rice plants, which resulted in increasing rice growth and grain yield. The HRI of heavy metals was below the acceptable limits after application of Br and Se.


Subject(s)
Arsenic , Oryza , Selenium , Soil Pollutants , Humans , Cadmium , Soil , Biodegradation, Environmental , Edible Grain/chemistry , Soil Pollutants/analysis
2.
J Environ Manage ; 294: 112950, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34116307

ABSTRACT

Climate change scenarios predict a change in the rainfall regimes for this current century, which has different impacts on soil greenhouse gas (GHG) fluxes. However, how changes in annual rainfall affect annual GHG fluxes of forest soils remain unknown. A six-year field experiment with -25% and -50% throughfall (TF) and +25% TF manipulation was performed to explore the mechanisms involving GHG fluxes under a mature temperate forest, northeastern China and to work out whether the TF effect sizes on annual soil GHG fluxes vary with dry and wet years. The results showed that both -25% TF and -50% TF treatments depressed annual soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions but increased annual soil methane (CH4) uptake. A contrary pattern of annual soil GHG fluxes was observed in the +25% TF treatment. When annual TF input was decreased by 100 mm, annual soil N2O and CO2 emissions were decreased by 18.1 ± 3.1 mg N m-2 and by 39.4 ± 6.1 g C m-2 during the growing season, respectively, and annual soil CH4 uptake was increased by 11.5 ± 3.4 mg C m-2. Both -25% TF and -50% TF treatments reduced annual soil dissolved organic C (DOC) leaching by 29.3% and 45.6% and dissolved total N (DN) leaching by 30.8% and 39.6%, respectively. Contrary to annual soil N2O and CO2 emissions, annual soil CH4 uptake during the growing season significantly decreased with an increase in the annual leaching fluxes of soil DOC, inorganic N, and DN. Besides soil moisture and temperature and pH, soil GHG fluxes under manipulating TF condition were regulated by soil labile C and N status. Our findings indicated that the TF effect sizes on both annual GHG fluxes and net annual GHG balance (GWP) of forest soils varied with dry and wet years in northeastern China. The results highlight the importance of altered annual rainfall in regulating annual soil GHG fluxes and the GWP in temperate forests under global climate change.


Subject(s)
Greenhouse Gases , Carbon Dioxide/analysis , China , Forests , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...