Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Article in English | MEDLINE | ID: mdl-38843411

ABSTRACT

Purpose: This research was conducted to construct an ankle pump motion counter and system with orthopedic characteristics and analyze the impacts of fast-track surgery on postoperative deep venous thrombosis (DVT) among patients with lower limb fractures. Methods: First, an ankle pump motion counter system was set up to detect postoperative rehabilitation training (Hardware design: This involves components such as an accelerometer sensor, microcontroller, circuit design, power supply, and wireless module. The accelerometer sensor is used to monitor key points and capture motion signals, while the microcontroller handles frequency calculations and generates alerts for abnormal ankle pump motion parameters. Circuit design ensures the proper functioning of the device, and the power supply meets the requirements of the ankle pump motion counter. The wireless module is used for data transmission and communication with other devices. Software design: This includes software design for both the patient and doctor sides. The software design involves defining software requirements and module divisions, designing data acquisition and filtering programs, developing programs for data parameter reading and writing, implementing communication protocols, designing data communication programs, and creating rehabilitation training plans and training record programs). Then, a retrospective analysis was carried out for the subjects (100 patients with lower limb fractures treated in Zhejiang Hospital between June 2021 and June 2022. They were randomly enrolled into control and experimental groups (50 cases each). The ankle pump motion counter was utilized for the patients in the experimental group. Before surgery, gender, age, the incidence of venous thromboembolism (VTE), and the muscle strength of both lower limbs of the two groups were recorded. After surgery, numerical rating scale (NRS) pain scores, D-dimer (D-D), and average length of hospitalization 3 d after surgery and venous thrombosis of both lower limbs 5 d after surgery of two groups were compared. Results: D-D of the control group was significantly higher than that of the experimental group 3 days after surgery (P < .05), while the NRS pain score was relatively lower (P < .05). The average hospitalization length for the experimental group was 10.2 days versus 16.2 days for the control group. The incidence of VTE 5 days after the surgery was 2% for the experimental group compared to 6% for the control group (P < .05). Conclusion: The ankle pump motion counter system has the potential to improve VTE prevention, enhance patient compliance, streamline healthcare delivery, standardize care, and enable data-driven decision-making at a wider clinical level. By accurately monitoring ankle pump exercises and providing real-time feedback, this system can contribute to better patient outcomes, save time for healthcare providers, and facilitate evidence-based practices in the prevention of postoperative DVT among patients with lower limb fractures.

2.
Anal Chim Acta ; 1309: 342687, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772659

ABSTRACT

BACKGROUND: Cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), as three major biothiols are involved in a variety of physiological processes and play a crucial role in plant growth. Abnormal levels of Cys can cause plants to fail to grow properly. To date, although a very large number of fluorescent probes have been reported for the detection of biothiols, very few of them can be used for the selective discrimination of Cys from GSH and Hcy due to their structural similarity, and only a few of them can be used for plant imaging. RESULTS: Here, three fluorescent probes (o-/m-/p-TMA) based on TMN fluorophore and the ortho-/meta-/para-substituted maleimide recognition groups were constructed to investigate the selective response effect of Cys. Compared to the o-/m-TMA, p-TMA can selectively detect Cys over GSH and Hcy with a rapid response time (10 min) and a low detection limit (0.26 µM). The theoretical calculation confirmed that the intermediate p-TMA-Cys-int has shorter interatomic reaction distances (3.827 Å) compared to o-/m-TMA-Cys (5.533/5.287 Å), making it more suitable for further transcyclization reactions. Additionally, p-TMA has been employed for selective tracking of exogenous and endogenous Cys in Arabidopsis thaliana using both single-/two-photon fluorescence imaging. Furthermore, single cell walls produced obvious two-photon fluorescence signals, indicating that p-TMA can be used for high-concentration Cys analysis in single cells. Surprisingly, p-TMA can be used as a fluorescent dye for protein staining in SDS-PAGE with higher sensitivity (7.49 µg/mL) than classical Coomassie brilliant blue (14.11 µg/mL). SIGNIFICANCE: The outstanding properties of p-TMA make it a promising multifunctional molecular tool for the highly selective detection of Cys over GSH and Hcy in various complex environments, including water solutions, zebrafish, and plants. Additionally, it has the potential to be developed as a fluorescent dye for a simple and fast SDS-PAGE fluorescence staining method.


Subject(s)
Cysteine , Electrophoresis, Polyacrylamide Gel , Fluorescent Dyes , Glutathione , Homocysteine , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Cysteine/analysis , Cysteine/chemistry , Glutathione/analysis , Glutathione/chemistry , Homocysteine/analysis , Homocysteine/chemistry , Animals , Photons , Optical Imaging , Arabidopsis/chemistry , Humans , Cyclization , Zebrafish
3.
Eur J Med Chem ; 271: 116443, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691887

ABSTRACT

Xanthine oxidase (XO) is a key enzyme for the production of uric acid in the human body. XO inhibitors (XOIs) are clinically used for the treatment of hyperuricemia and gout, as they can effectively inhibit the production of uric acid. Previous studies indicated that both indole and isoxazole derivatives have good inhibitory effects against XO. Here, we designed and synthesized a novel series of N-5-(1H-indol-5-yl)isoxazole-3-carboxylic acids according to bioisosteric replacement and hybridization strategies. Among the obtained target compounds, compound 6c showed the best inhibitory activity against XO with an IC50 value of 0.13 µM, which was 22-fold higher than that of the classical antigout drug allopurinol (IC50 = 2.93 µM). Structure-activity relationship analysis indicated that the hydrophobic group on the nitrogen atom of the indole ring is essential for the inhibitory potencies of target compounds against XO. Enzyme kinetic studies proved that compound 6c acted as a mixed-type XOI. Molecular docking studies showed that the target compound 6c could not only retain the key interactions similar to febuxostat at the XO binding site but also generate some new interactions, such as two hydrogen bonds between the oxygen atom of the isoxazole ring and the amino acid residues Ser876 and Thr1010. These results indicated that 5-(1H-indol-5-yl)isoxazole-3-carboxylic acid might be an efficacious scaffold for designing novel XOIs and compound 6c has the potential to be used as a lead for further the development of novel anti-gout candidates.


Subject(s)
Carboxylic Acids , Drug Design , Enzyme Inhibitors , Isoxazoles , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Isoxazoles/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemical synthesis , Carboxylic Acids/pharmacology , Carboxylic Acids/chemistry , Carboxylic Acids/chemical synthesis , Molecular Structure , Humans , Molecular Docking Simulation , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Dose-Response Relationship, Drug
4.
Int J Biol Macromol ; 269(Pt 2): 131904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688337

ABSTRACT

Catalytic reduction of p-nitrophenol is usually carried out using transition metal nanoparticles such as gold, palladium, silver, and copper, especially palladium nanoparticles (Pd NPs), which are characterized by fast reaction rate, high turnover frequency, good selectivity, and high yield. However, the aggregation and precipitation of the metals lead to the decomposition of the catalyst, which results in a significant reduction of the catalytic activity. Therefore, the preparation of homogeneous stabilized palladium nanoparticles catalysts has been widely studied. Stabilized palladium nanoparticles mainly use synthetic polymers. Cellulose microspheres, as a natural polymer material with low-cost and porous fiber network structure, are excellent carriers for stabilizing metal nanoparticles. Cellulose microspheres impregnated with palladium metal nanoparticles were carbonized to have a larger specific surface area and highly dispersed palladium nanoparticles, which exhibited excellent catalytic activity in the catalytic reduction of p-nitrophenol. In this work, the cellulose carbon-based microspheres palladium (Pd@CCM) catalysts were designed and characterized by SEM, TEM, EDS, XRD, FTIR, XPS, TGA, BET, and so on. Furthermore, the catalytic performance of Pd@CCM catalysts was investigated via p-nitrophenol reduction, which showed high catalytic activity. This catalyst also exhibited excellent catalytic performance in the Suzuki-Miyaura coupling reaction. Linking aromatic monomer and benzene through Suzuki-Miyaura coupling was presented as an effective route to obtaining biaryls, and the synthesis method is low-cost and simple. In addition, Pd@CCM showed desirable recyclability while maintaining its catalytic activity even after five recycles. This work is highly suggestive of the design and application of the heterogeneous catalyst.


Subject(s)
Carbon , Cellulose , Metal Nanoparticles , Microspheres , Nitrophenols , Palladium , Palladium/chemistry , Catalysis , Nitrophenols/chemistry , Metal Nanoparticles/chemistry , Cellulose/chemistry , Carbon/chemistry , Oxidation-Reduction
5.
Int J Biol Macromol ; 269(Pt 2): 131885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688340

ABSTRACT

Ag-doped Cu2O immobilized carbon beads (Ag/Cu2O@CB) based composite photocatalysts have been prepared for the removal of levofloxacin, an antibiotic, from water. The photocatalysts were prepared by the processes of chemical reduction and in-situ solid-phase precipitation. The composite photocatalyst was characterized by a porous and interconnected network structure. Ag nanoparticles were deposited on Cu2O particles to develop a metal-based semiconductor to increase the catalytic efficiency of the system and the separation efficiency of the photogenerated carriers. Cellulose-derived carbon beads (CBs) can also be used as electron storage libraries which can capture electrons released from the conduction band of Cu2O. The results revealed that the maximum catalytic degradation efficiency of the composite photocatalyst for the antibiotic levofloxacin was 99.02 %. The Langmuir-Hinshelwood model was used to study the reaction kinetics, and the process of photodegradation followed first-order kinetics. The maximum apparent rate was recorded to be 0.0906 min-1. The mass spectrometry technique showed that levofloxacin degraded into carbon dioxide and water in the presence of the photocatalyst. The results revealed that the easy-to-produce photocatalyst was stable and efficient in levofloxacin removing.


Subject(s)
Carbon , Cellulose , Copper , Levofloxacin , Light , Silver , Levofloxacin/chemistry , Copper/chemistry , Cellulose/chemistry , Catalysis , Silver/chemistry , Carbon/chemistry , Photolysis , Kinetics , Water Pollutants, Chemical/chemistry , Photochemical Processes , Anti-Bacterial Agents/chemistry
6.
Environ Res ; 247: 118106, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38224941

ABSTRACT

Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.


Subject(s)
Air Pollutants , Air Pollution , Animals , Humans , Longevity/genetics , Caenorhabditis elegans/genetics , Transcriptome , Particulate Matter/analysis , Air Pollution/analysis , Air Pollutants/toxicity , Environmental Exposure/analysis
7.
Environ Res ; 241: 117619, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37952855

ABSTRACT

Multi-walled carbon nanotube (MWCNT) exposure was observed to cause damages on the viability of ocular cells, however, the underlying mechanisms remain not well understood. Epigenetic alterations that regulate gene expression have been identified as a major responsiveness to environmental challenge. Thus, the aim of this study was to screen methylation-regulated genes involved in MWCNT exposure. The Illumina Human Methylation 850 K array was employed to determine the genome-wide DNA methylation profile of human retinal pigment epithelial cell line (ARPE-19) exposed to 50% inhibition concentration of MWCNTs (100 µg/ml) for 24 h or without (n = 3 for each group). Then, the transcriptome data obtained by high-throughput RNA sequencing previously were integrated with DNA methylome to identify the overlapped genes. As a result, the integrative bioinformatics analysis identified that compared with controls, FA complementation group C (FANCC) was hypermethylated and downregulated in MWCNT-exposed ARPE-19 cells. Quantitative real-time polymerase chain reaction analysis confirmed the mRNA expression level of FANCC was significantly decreased following MWCNT treatment and the addition of DNA methylation inhibitor 5-Aza-deoxycytidine (10 µM) reversed this decrease. Pyrosequencing analysis further validated the hypermethylation status at the 5'-untranslated promoter region of FANCC (cg14583550) in MWCNT-exposed ARPE-19 cells. Protein-protein interaction network and function analyses predicted that FANCC may contribute to MWCNT-induced cytotoxicity by interacting with heat shock protein 90 beta family member 1 and then upregulating cytokine interleukin-6 and apoptosis biomarker caspase 3. In conclusion, the present study links the epigenetic modification of FANCC with the pathogenesis of MWCNT-induced retinal toxicity.


Subject(s)
DNA Methylation , Nanotubes, Carbon , Humans , Nanotubes, Carbon/toxicity , Epithelial Cells , Epigenesis, Genetic , Cell Line , Fanconi Anemia Complementation Group C Protein/metabolism
8.
Anal Methods ; 15(43): 5891-5900, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37905962

ABSTRACT

The identification of Chinese baijiu is crucial to regulating the international market and maintaining legitimate rights, as the popularity, influence and awareness of baijiu are growing. A graphene quantum dot (GQD) based fluorescence sensor array is designed in this paper. Upon using only GQDs as a single sensing element, combining three different solvents improves the sensing array's detection sensitivity while simplifying material preparation and experimental detection. Adding organic substances creates intermolecular forces between the GQDs and the solvent, causing the fluorescence intensity to change. The sensor array was able to distinguish 21 types of organic matter, different ratios of quaternary mixed organic materials and 17 types of baijiu of the same brand. It also showed excellent performance in the detection of species in blind samples, with the machine learning algorithm successfully distinguishing baijiu from five other distilled spirits. The experiment provides guidance for the practical application of GQDs and provides a simple but effective reference for sensor arrays to detect baijiu.

9.
Ageing Res Rev ; 91: 102062, 2023 11.
Article in English | MEDLINE | ID: mdl-37673133

ABSTRACT

Environmental and occupational exposure to hazardous substances accelerates biological aging. However, the toxic effects of nanomaterials on telomere and cellular senescence (major hallmarks of the biological aging) remained controversial. This study was to synthesize all published evidence to explore the effects of nanomaterial exposure on the telomere change, cellular senescence and mortality of model animals. Thirty-five studies were included by searching electronic databases (PubMed, Embase and Web of Science). The pooled analysis by Stata 15.0 software showed that compared with the control, nanomaterial exposure could significantly shorten the telomere length [measured as kbp: standardized mean difference (SMD) = -1.88; 95% confidence interval (CI) = -3.13 - - 0.64; % of control: SMD = -1.26; 95%CI = -2.11- - 0.42; < 3 kbp %: SMD = 5.76; 95%CI = 2.92 - 8.60), increase the telomerase activity (SMD = -1.00; 95%CI = -1.74 to -0.26), senescence-associated ß-galactosidase levels in cells (SMD = 8.20; 95%CI = 6.05 - 10.34) and zebrafish embryos (SMD = 7.32; 95%CI = 4.70 - 9.94) as well as the mortality of zebrafish (SMD = 3.83; 95%CI = 2.94 - 4.72)]. The expression levels of telomerase TERT, shelterin components (TRF1, TRF2 and POT1) and senescence biomarkers (p21, p16) were respectively identified to be decreased or increased in subgroup analyses. In conclusion, this meta-analysis demonstrates that nanomaterial exposure is associated with telomere attrition, cell senescence and organismal death.


Subject(s)
Telomerase , Zebrafish , Animals , Humans , Zebrafish/metabolism , Telomerase/genetics , Telomere/metabolism , Shelterin Complex , Cellular Senescence , Mammals/metabolism
10.
Mikrochim Acta ; 190(9): 344, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37542665

ABSTRACT

A novel MIL-88-NH2@COF composite was produced by in situ growth of covalent organic framework (COF) on the metal-organic framework (MOF) surface. To obtain a coating fiber for solid-phase microextraction (SPME), the MIL-88-NH2@COF composite physically adhered to the stainless steel wire. Combined with gas chromatography-flame ionization detection (GC-FID), various analytes such as chlorophenols (CPs), phthalates (PAEs), and polycyclic aromatic hydrocarbons (PAHs) were extracted and determined to evaluate the extraction performance of MIL-88-NH2@COF coated fibers and explore their extraction mechanism. This composite exhibit excellent extraction performance and adsorption capacity for various analytes, especially for PAHs with enrichment factor up to 9858. The SPME-GC-FID method based on MIL-88-NH2@COF fiber was established for the determination of five PAHs after the main extraction conditions were optimized. Under optimal conditions, the proposed technique showed a wide linear range (1-150 ng mL-1) with a low limit of detection (0.019 ng mL-1) and a high coefficient of determination (R2 > 0.99). The developed SPME-GC-FID method was used to determine PAHs in green tea and black tea samples, with good recoveries of 51.70-103.64% and 68.56-103.64%, respectively. It is worth mentioning that this is the first time MIL-88-NH2@COF composites have been prepared and applied to SPME. The preparation method of the composite provides a new idea in adsorbent preparation, which will contribute to the field of SPME.

11.
Carbohydr Polym ; 315: 120985, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37230622

ABSTRACT

Designing advanced functional cellulose-based materials by one-step homogeneous preparation technology is a great challenge since cellulose is insoluble in common solvents or difficult to regenerate and shape. Quaternized cellulose beads (QCB) were prepared from a homogeneous solution by one-step cellulose quaternization homogeneous modification and macromolecules' reconstruction technology. Morphological and structural characterizations of QCB were conducted by SEM, FTIR and XPS, etc. The adsorption behavior of QCB was studied using amoxicillin (AMX) as a model molecule. The adsorption of QCB for AMX was multilayer adsorption controlled by both physical adsorption and chemical adsorption. The removal efficiency for 60 mg L-1 AMX reached 98.60 % through electrostatic interaction, and the adsorption capacity reached 30.23 mg g-1. AMX adsorption was almost reversible without loss of binding efficiency after three cycles. This facile and green method may offer a promising strategy for the development of functional cellulose materials.

12.
Int J Nanomedicine ; 18: 2465-2484, 2023.
Article in English | MEDLINE | ID: mdl-37192896

ABSTRACT

Background: The wide application of multi-walled carbon nanotubes (MWCNTs) in various fields has raised enormous concerns regarding their safety for humans. However, studies on the toxicity of MWCNTs to the eye are rare and potential molecular mechanisms are completely lacking. This study was to evaluate the adverse effects and toxic mechanisms of MWCNTs on human ocular cells. Methods: Human retinal pigment epithelial cells (ARPE-19) were treated with pristine MWCNTs (7-11 nm) (0, 25, 50, 100 or 200 µg/mL) for 24 hours. MWCNTs uptake into ARPE-19 cells was examined using transmission electron microscopy (TEM). The cytotoxicity was evaluated by CCK-8 assay. The death cells were detected by Annexin V-FITC/PI assay. RNA profiles in MWCNT-exposed and non-exposed cells (n = 3) were analyzed using RNA-sequencing. The differentially expressed genes (DEGs) were identified through the DESeq2 method and hub of which were filtered by weighted gene co-expression, protein-protein interaction (PPI) and lncRNA-mRNA co-expression network analyses. The mRNA and protein expression levels of crucial genes were verified using quantitative polymerase chain reaction (qPCR), colorimetric analysis, ELISA and Western blotting. The toxicity and mechanisms of MWCNTs were also validated in human corneal epithelial cells (HCE-T). Results: TEM analysis indicated the internalization of MWCNTs into ARPE-19 cells to cause cell damage. Compared with untreated ARPE-19 cells, those exposed to MWCNTs exhibited significantly decreased cell viabilities in a dose-dependent manner. The percentages of apoptotic (early, Annexin V positive; late, Annexin V and PI positive) and necrotic (PI positive) cells were significantly increased after exposure to IC50 concentration (100 µg/mL). A total of 703 genes were identified as DEGs; 254 and 56 of them were, respectively, included in darkorange2 and brown1 modules that were significantly associated with MWCNT exposure. Inflammation-related genes (including CXCL8, MMP1, CASP3, FOS, CXCL2 and IL11) were screened as hub genes by calculating the topological characteristics of genes in the PPI network. Two dysregulated long non-coding RNAs (LUCAT1 and SCAT8) were shown to regulate these inflammation-related genes in the co-expression network. The mRNA levels of all eight genes were confirmed to be upregulated, while caspase-3 activity and the release of CXCL8, MMP1, CXCL2, IL11 and FOS proteins were demonstrated to be increased in MWCNT-treated ARPE-19 cells. MWCNTs exposure also can induce cytotoxicity and increase the caspase-3 activity and the expression of LUCAT1, MMP1, CXCL2, and IL11 mRNA and protein in HCE-T cells. Conclusion: Our study provides promising biomarkers for monitoring MWCNT-induced eye disorders and targets for developing preventive and therapeutic strategies.


Subject(s)
Nanotubes, Carbon , Humans , Nanotubes, Carbon/toxicity , Matrix Metalloproteinase 1 , Annexin A5 , Caspase 3 , Interleukin-11 , Inflammation/chemically induced , Inflammation/genetics , RNA, Messenger/genetics , RNA
13.
J Colloid Interface Sci ; 645: 391-399, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37156147

ABSTRACT

Flexible supercapacitors have received considerable attention for their potential application in flexible electronics, but usually suffer from relatively low energy density. Developing flexible electrodes with high capacitance and constructing asymmetric supercapacitors with large potential window has been considered as the most effective approach to achieve high energy density. Here, a flexible electrode with nickel cobaltite (NiCo2O4) nanowire arrays on nitrogen (N)-doped carbon nanotube fiber fabric (denoted as CNTFF and NCNTFF, respectively) was designed and fabricated through a facile hydrothermal growth and heat treatment process. The obtained NCNTFF-NiCo2O4 delivered a high capacitance of 2430.5 mF cm-2 at 2 mA cm-2, a good rate capability of 62.1 % capacitance retention even at 100 mA cm-2 and a stable cycling performance of 85.2 % capacitance retention after 10,000 cycles. Moreover, the asymmetric supercapacitor constructed with NCNTFF-NiCo2O4 as positive electrode and activated CNTFF as negative electrode exhibited a combination of high capacitance (883.6 mF cm-2 at 2 mA cm-2), high energy density (241 µW h cm-2) and high power density (80175.1 µW cm-2). This device also had a long cycle life after 10,000 cycles and good mechanical flexibility under bending conditions. Our work provides a new perspective on constructing high-performance flexible supercapacitors for flexible electronics.

14.
Food Chem ; 422: 136080, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37150116

ABSTRACT

An acid-sensitive carbon dot fluorescence sensing array was investigated for the differentiated recognition of distilled spirits. Due to the electrostatic interactions between CDs and organic acids, organic acids affect the protonation and fluorescence properties of CDs, which in turn modify the CDs triple fluorescence emission. The regular linear variation of the fluorescence sensor was found under acidic conditions (3.0 < pH < 6.2). A comprehensive study of acids with selectivity, different concentrations (0.1 mM, 1 mM, 10 mM, 40 mM), different types (8 species) and mixed acids (formic acid and acetic acid), and good quantification capability for acetic acid (0.01-1 mM). Demonstrating good recognition ability of the sensor array for complex analyte. On this basis, the fluorescence sensor array was applied to the classification and recognition of liquors. LDA has realized the identification of 16 kinds of Baijiu and 21 kinds of distilled liquors with an accuracy of 100%.


Subject(s)
Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Acetic Acid , Fluorescent Dyes/chemistry
15.
Food Chem ; 415: 135525, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36870207

ABSTRACT

In order to timely discriminate wheat with different mildew rates, a Dyes/Dyes-Cu-MOF paper-based colorimetric sensor array was designed. Using array points to capture volatile gases of wheat with different mildew rates, and output RGB values. The correlation between ΔR/ΔG/ΔB values and odor components was established. The ΔG values of array points 2' and 3' showed the best correlation with mildew rate, with R2 of 0.9816 and 0.9642. The ΔR value of 3 and the ΔG value of 2 correlate well with the mildew rate, with R2 of 0.9625 and 0.9502, respectively. Then, the ΔRGB values are subjected to pattern recognition processing, and LDA achieves 100% correct discrimination for all samples, or divides high and low mildew areas. This method provides an odor-based monitoring tool for fast, visual and nondestructive evaluation of food safety and quality through visualization of odors produced by different mildew rates.


Subject(s)
Coloring Agents , Triticum , Colorimetry/methods , Fungi , Gases
16.
Food Chem ; 417: 135888, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36917907

ABSTRACT

Quickly discriminating different segmented Baijiu can directly control its grade and indirectly affect the quality of the finished Baijiu. A fluorescence sensor array was constructed based on PEI-terminated silver nanoparticles and lanthanide metal ions (PEI@Ag NPs@Ln). Ag NPs were stably dispersed in the PEI-woven network, initially accompanied by excellent fluorescence signals. Organic molecules disrupted the PEI structure and dragged the Ag NPs out. The free Ag NPs sintered or aggregated with the diffusion, resulting in fluorescence quenching. The three lanthanide ions speed up the process, allowing different organic molecules to exhibit more distinct signals. Thus, this sensor was used to map 11 organic molecules' fingerprints and to discriminate segmented Baijiu. The whole process takes only 2 min. With the assistance of pattern recognition, segmented Baijiu from three cellars were successfully discriminated. Fast, effective and simple are highlights, which opens up its practical application potential in the detection field.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Fluorescent Dyes , Silver/chemistry , Ions/chemistry , Spectrum Analysis, Raman
17.
Colloids Surf B Biointerfaces ; 223: 113184, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36739673

ABSTRACT

To quickly screen the active pharmaceutical ingredient that can be used as acetylcholinesterase inhibitors (AChEIs) to treat Alzheimer's disease, an enzyme colorimetric cellulose membrane bioactivity strip (CBS) was developed for simple and rapid screening of AChEIs. The amino group of acetylcholinesterase (AChE) undergoes Schiff base reaction with the aldehyde group on the oxidized cellulose membranes, then the AChE was covalently cross-linking on the surface of cellulose membranes, enabling the screening based on Ellman's enzyme colorimetric method. When the enzyme activity of AChE was inhibited after incubation with inhibitors, the hydrolysis of S-Acetylthiocholine iodide decreased, consequently, the 5-thio-2-nitrobenzoic acid generated by the reaction with 5,5'-dithiobis (2-nitrobenzoic acid) also decreased, leading to a decreased color intensity. In addition, CBSs had fast chromogenic time, excellent specificity, and extraordinary storage stability. Tacrine and Donepezil were used as representative inhibitors during the detection, while their IC50 and limit of detection were determined. Therefore, our work not only established a platform for effective preliminary screening of AChEIs but also inspired the further development of other cellulose membrane-based biosensors.


Subject(s)
Acetylcholinesterase , Cellulose , Colorimetry , Membranes , Aldehydes , Cholinesterase Inhibitors
18.
ACS Appl Mater Interfaces ; 15(3): 4246-4256, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36639350

ABSTRACT

Energy storage capacitors are extensively used in pulsed power devices because of fast charge/discharge rates and high power density. However, the low energy storage density and efficiency of dielectric capacitors limit their further commercialization in modern energy storage applications. Lead-free AgNbO3-based antiferroelectric (AFE) ceramics are considered to be one of the most promising environmentally friendly materials for dielectric capacitors because of their characteristic double polarization-electric field hysteresis loops with small remanent polarization and large maximum polarization. An enhancement of these characteristics allows achieving a synergistic improvement of both the energy storage density and efficiency of the antiferroelectric materials. This work reports on a feasible codoping strategy enabling the preparation of AgNbO3-based ceramics with high energy storage performance. An introduction of La3+ and Ta5+ ions into the AgNbO3 perovskite lattice was found to increase the structural stability of the antiferroelectric phase at the expense of a reduction of local polar regions, resulting in the shifting of the electric field-induced antiferroelectric-ferroelectric phase transition toward higher fields. An ultrahigh recoverable energy storage density of 6.73 J/cm3 and high energy storage efficiency of 74.1% are obtained for the Ag0.94La0.02Nb0.8Ta0.2O3 ceramic subjected to a unipolar electric field of 540 kV/cm. These values represent the best energy performance in reported lead-free ceramics so far. Hence, the La3+/Ta5+ codoping has been shown to be a good route to improve the energy storage properties of AgNbO3 ceramics.

19.
Colloids Surf B Biointerfaces ; 222: 113125, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608367

ABSTRACT

The luminescent carbon dots with peroxidase mimicking property had attracted considerable attention in biomedical field. In this work, iron-doped carbon dots (Fe-CDs) were prepared by one-pot hydrothermal method with 5, 10, 15, 20-tetra (4-borate phenyl)-21H, 23H-porphyrin Fe (II) (Fe-TBPP) as precursor. The obtained Fe-CDs emitted intense blue luminescence under ultraviolet light irradiation. Moreover, the Fe-CDs exhibited remarkable peroxidase mimicking property, which can efficiently catalyze the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) into blue ox-TMB in the presence of hydrogen peroxide (H2O2). More importantly, the emission of Fe-CDs could be gradually quenched with the addition of H2O2. Based on these phenomena, a new optical dual-mode (colorimetric and fluorometric) method for the detection of H2O2 and glucose was successfully established. The detection limits of glucose were calculated to be 3.86 and 7.27 µM (S/N = 3) respectively based on the colorimetric and fluorometric methods. Furthermore, we combined this dual-mode detection method with smartphone imaging. The colorimetric and fluorescent images were collected by recognition software of smartphone, which were then transformed into the corresponding HSL values for quantitative determination of glucose. Finally, the dual-mode approach based on Fe-CDs was used for the detection of glucose content in human serum, demonstrating the potential application of carbon dots in the biological area.


Subject(s)
Peroxidase , Quantum Dots , Humans , Colorimetry/methods , Carbon , Glucose , Hydrogen Peroxide , Luminescence , Peroxidases , Coloring Agents , Limit of Detection
20.
J Innate Immun ; 15(1): 380-396, 2023.
Article in English | MEDLINE | ID: mdl-36649698

ABSTRACT

The cytosolic viral nucleic acid-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor interferon (IFN)-regulatory factor 3 (IRF3) to induce type I IFN production and antiviral immune responses. However, the mechanism that triggers the binding of TBK1 and IRF3 after virus infection remains not fully understood. Here, we identified that thousand and one kinase 1 (TAOK1), a Ste20-like kinase, positively regulated virus-induced antiviral immune responses by controlling the TBK1-IRF3 signaling axis. Virus invasion downregulated the expression of TAOK1. TAOK1 deficiency resulted in decreased nucleic acid-mediated type I IFN production and increased susceptibility to virus infection. TAOK1 was constitutively associated with TBK1 independently of the mitochondrial antiviral signaling protein MAVS. TAOK1 promoted IRF3 activation by enhancing TBK1-IRF3 complex formation. TAOK1 enhanced virus-induced type I IFN production in a kinase activity-dependent manner. Viral infection induced TAOK1 to bind with dynein instead of microtubule-associated protein 4 (MAP4), leading to the trafficking of TBK1 to the perinuclear region to bind IRF3. Thus, the depolymerization of microtubule impaired virus-mediated IRF3 activation. Our results revealed that TAOK1 functioned as a new interaction partner and regulated antiviral signaling via trafficking TBK1 along microtubules to bind IRF3. These findings provided novel insights into the function of TAOK1 in the antiviral innate immune response and its related clinical significance.


Subject(s)
Nucleic Acids , Virus Diseases , Humans , Signal Transduction , Phosphorylation , Immunity, Innate , Nucleic Acids/metabolism , Interferon Regulatory Factor-3/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...