Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 11: 1294, 2020.
Article in English | MEDLINE | ID: mdl-33013365

ABSTRACT

Nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39) inhibitors have potential as novel drugs for the (immuno)therapy of cancer. They increase the extracellular concentration of immunostimulatory ATP and reduce the formation of AMP, which can be further hydrolyzed by ecto-5'-nucleotidase (CD73) to immunosuppressive, cancer-promoting adenosine. In the present study, we synthesized analogs and derivatives of the standard CD39 inhibitor ARL67156, a nucleotide analog which displays a competitive mechanism of inhibition. Structure-activity relationships were analyzed at the human enzyme with respect to substituents in the N 6- and C8-position of the adenine core, and modifications of the triphosph(on)ate chain. Capillary electrophoresis coupled to laser-induced fluorescence detection employing a fluorescent-labeled ATP derivative was employed to determine the compounds' potency. Selected inhibitors were additionally evaluated in an orthogonal, malachite green assay versus the natural substrate ATP. The most potent CD39 inhibitors of the present series were ARL67156 and its derivatives 31 and 33 with Ki values of around 1 µM. Selectivity studies showed that all three nucleotide analogs additionally blocked CD73 acting as dual-target inhibitors. Docking studies provided plausible binding modes to both targets. The present study provides a full characterization of the frequently applied CD39 inhibitor ARL67156, presents structure-activity relationships, and provides a basis for future optimization towards selective CD39 and dual CD39/CD73 inhibitors.

2.
Analyst ; 143(22): 5417-5430, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30303204

ABSTRACT

Ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39) is a major ectonucleotidase that hydrolyzes proinflammatory ATP via ADP to AMP, which is subsequently converted by ecto-5'-nucleotidase (CD73) to immunosuppressive adenosine. Activation of CD39 has potential for treating inflammatory diseases, while inhibition was suggested as a novel strategy for the immunotherapy of cancer. In the present study, we developed a selective and highly sensitive capillary electrophoresis (CE) assay using a novel fluorescent CD39 substrate, a fluorescein-labelled ATP (PSB-170621A) that is converted to its AMP derivative. To accelerate the assays, a two-directional (forward and reverse) CE system was implemented using 96-well plates, which is suitable for the screening of compound libraries (Z'-factor: 0.7). The detection limits for the forward and reverse operation were 11.7 and 2.00 pM, respectively, indicating a large enhancement in sensitivity as compared to previous methods (e.g. malachite-green assay: 1 000 000-fold, CE-UV assay: 500 000-fold, fluorescence polarization immunoassay: 12 500-fold). Enzyme kinetic studies at human CD39 revealed a Km value of 19.6 µM, and a kcat value of 119 × 10-3 s-1 for PSB-170621A, which shows similar substrate properties as ATP (11.4 µM and 82.5 × 10-3 s-1). The compound displayed similar properties at rat and mouse CD39. Subsequent docking studies into a homology model of human CD39 revealed a hydrophobic pocket that accommodates the fluorescein tag. PSB-170621A was found to be preferably hydrolyzed by CD39 as compared to other ectonucleotidases. The new assay was validated by performing inhibition assays with several standard CD39 inhibitors yielding results that were consonant with data using the natural substrates.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Antigens, CD/analysis , Apyrase/analysis , Electrophoresis, Capillary/methods , Enzyme Assays/methods , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Animals , Antigens, CD/chemistry , Antigens, CD/isolation & purification , Apyrase/antagonists & inhibitors , Apyrase/chemistry , Apyrase/isolation & purification , Humans , Kinetics , Limit of Detection , Mice , Molecular Docking Simulation , Rats , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...