Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 230: 113512, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595378

ABSTRACT

Graphitic carbon nitride (g-C3N4) had aroused tremendous attention in photodynamic antibacterial therapy due to its excellent energy band structure and appealing optical performance. Nevertheless, the superfast electron-hole recombination and dense biofilm formation abated its photodynamic antibacterial effect. To this end, a nanoheterojunction was synthesized via in-situ growing copper sulfide (CuS) on g-C3N4 (CuS@g-C3N4). On the one hand, CuS could form Fermi level difference with g-C3N4 to accelerate carrier transfer and thus facilitate electron-hole separation. On the other hand, CuS could respond near-infrared light to generate localized thermal to disrupt biofilm. Then the CuS@g-C3N4 nanoparticle was introduced into the poly-l-lactide (PLLA) scaffold. The photoelectrochemistry results demonstrated that the electron-hole separation efficiency was apparently enhanced and thereby brought an approximate sevenfold increase in reactive oxygen species (ROS) production. The thermal imaging indicated that the scaffold possesses a superior photothermal effect, which effectively eradicated the biofilm by disrupting its extracellular DNA and thereby facilitated to the entry of ROS. The entered ROS could effectively kill the bacteria by causing protein, K+, and nucleic acid leakage and glutathione consumption. As a consequence, the scaffold displayed an antibacterial rate of 97.2% and 98.5% against E. coli and S. aureus, respectively.


Subject(s)
Escherichia coli , Staphylococcus aureus , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Biofilms
2.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233093

ABSTRACT

Inverted perovskite solar cells (PSCs) have been extensively studied by reason of their negligible hysteresis effect, easy fabrication, flexible PSCs and good stability. The certified photoelectric conversion efficiency (PCE) achieved 23.5% owing to the formed lead-sulfur (Pb-S) bonds through the surface sulfidation process of perovskite film, which gradually approaches the performance of traditional upright structure PSCs and indicates their industrial application potential. However, the fabricated devices are severely affected by moisture, high temperature and ultraviolet light due to the application of organic materials. Depending on nitrogen, cost of protection may increase, especially for the industrial production in the future. In addition, the inverted PSCs are found with a series of issues compared with the traditional upright PSCs, such as nonradiative recombination of carriers, inferior stability and costly charge transport materials. Thus, the development of inverted PSCs is systematically reviewed in this paper. The design and fabrication of charge transport materials and perovskite materials, enhancement strategies (e.g., interface modification and doping) and the development of all-inorganic inverted devices are discussed to present the indicator for development of efficient and stable inverted PSCs.


Subject(s)
Solar Energy , Calcium Compounds , Lead , Nitrogen , Oxides , Sulfur , Titanium
3.
Int J Mol Sci ; 23(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36012746

ABSTRACT

As the third generation of new thin-film solar cells, perovskite solar cells (PSCs) have attracted much attention for their excellent photovoltaic performance. Today, PSCs have reported the highest photovoltaic conversion efficiency (PCE) of 25.5%, which is an encouraging value, very close to the highest PCE of the most widely used silicon-based solar cells. However, scholars have found that PSCs have problems of being easily decomposed under ultraviolet (UV) light, poor stability, energy level mismatch and severe hysteresis, which greatly limit their industrialization. As unique materials, quantum dots (QDs) have many excellent properties and have been widely used in PSCs to address the issues mentioned above. In this article, we describe the application of various QDs as additives in different layers of PSCs, as luminescent down-shifting materials, and directly as electron transport layers (ETL), light-absorbing layers and hole transport layers (HTL). The addition of QDs optimizes the energy level arrangement within the device, expands the range of light utilization, passivates defects on the surface of the perovskite film and promotes electron and hole transport, resulting in significant improvements in both PCE and stability. We summarize in detail the role of QDs in PSCs, analyze the perspective and associated issues of QDs in PSCs, and finally offer our insights into the future direction of development.


Subject(s)
Quantum Dots , Solar Energy , Calcium Compounds , Electric Power Supplies , Oxides , Titanium
4.
Nanomaterials (Basel) ; 12(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745441

ABSTRACT

Perovskite solar cells (PSCs) are currently attracting a great deal of attention for their excellent photovoltaic properties, with a maximum photoelectric conversion efficiency (PCE) of 25.5%, comparable to that of silicon-based solar cells. However, PSCs suffer from energy level mismatch, a large number of defects in perovskite films, and easy decomposition under ultraviolet (UV) light, which greatly limit the industrial application of PSCs. Currently, quantum dot (QD) materials are widely used in PSCs due to their properties, such as quantum size effect and multi-exciton effect. In this review, we detail the application of QDs as an interfacial layer to PSCs to optimize the energy level alignment between two adjacent layers, facilitate charge and hole transport, and also effectively assist in the crystallization of perovskite films and passivate defects on the film surface.

5.
Curr Med Sci ; 38(3): 387-397, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30074203

ABSTRACT

Firstly discovered in 1980s, human immunodeficiency virus (HIV) continues to affect more and more people. However, there is no effective drug available for the therapy of HIV infection. Betulinic acid existing in various medicinal herbs and fruits exhibits multiple biological effects, especially its outstanding anti-HIV activity, which has drawn the attentions of many pharmacists. Among the derivatives of betulinic acid, some compounds exhibited inhibitory activities at the nanomolar concentration, and have entered phase II clinical trials. This paper summarizes the current investigations on the anti-HIV activity of betulinic acid analogues, and provides valuable data for subsequent researches.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV-1/drug effects , Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Humans , Pentacyclic Triterpenes , Structure-Activity Relationship , Virus Replication/drug effects , Betulinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...