Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Imaging ; 19(13): 1580-1590, 2023.
Article in English | MEDLINE | ID: mdl-36799419

ABSTRACT

BACKGROUND: Infrared thermal imaging technology was used to observe the changes in infrared radiation temperature at acupoints in rats caused by chronic myocardial ischemia injury. OBJECTIVE: This study aims to compare the difference of body surface infrared radiation temperature information of three groups of acupoints: bilateral Neiguan (PC6), bilateral Yanglingquan (GB33), and bilateral Sham Acupoints (SA) in the pathological state of myocardial ischemia injury, and to explore the relationship between acupoints and viscera state. METHODS: SPF adult Wistar male rats (n = 20) were randomly divided into a control (CTL; n = 10) and an isoproterenol group (ISO; n = 10). Chronic myocardial injury was induced in rats by subcutaneous injection of isoproterenol hydrochloride for 14 d. On the second day after the establishment of the model, the serum levels of cardiac troponin (cTnI) and creatine kinase isoenzyme (CK-MB) were measured by enzyme-linked immunosorbent assay (ELISA). The morphological changes of the myocardial tissue in the two groups were observed by hematoxylin-eosin (HE) staining and their pathological scores were evaluated, which was then used to determine the myocardial ischemic injury. Two days before and after the establishment of the model, the electrocardiograms (ECG) of the two groups of rats were recorded by the (ECG) data acquisition system, and the infrared thermal imaging platform was used to detect the temperature of the six acupoints. RESULTS: 1. After subcutaneous injection of isoproterenol hydrochloride for 14 days, the ST segment of the ECG decreased in the ISO group compared with that of the CTL group; 2. Myocardial tissue injury was serious in the ISO group compared to the CTL group; 3. Serum cTn-I and CK-MB were significantly increased (P <0 01) in the ISO group, compared to that in the CTL group; 4. The infrared radiation temperature on the body surface of bilateral Neiguan (PC6) acupoints decreased significantly in the ISO group, compared to that of the CTL group. CONCLUSION: Infrared thermal imaging technology can be used to detect the changes in the energy state of acupoints. Chronic myocardial ischemic injury can cause a decrease in IR temperature on the body surface of bilateral Neiguan (PC6) acupoints, suggesting that visceral diseases can lead to changes in the energy metabolism of acupoints.


Subject(s)
Electroacupuncture , Myocardial Ischemia , Rats , Male , Humans , Animals , Rats, Wistar , Isoproterenol/pharmacology , Acupuncture Points , Temperature , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/metabolism
2.
Front Cardiovasc Med ; 9: 1035675, 2022.
Article in English | MEDLINE | ID: mdl-36386374

ABSTRACT

Background: This study aimed to explore the impact of hypoxic hepatitis (HH) on survival in heart failure (HF) patients and to develop an effective machine learning model to predict 30-day mortality risk in HF patients with HH. Methods: In the Medical Information Mart for Intensive Care (MIMIC)-III and IV databases, clinical data and survival situations of HF patients admitted to the intensive care unit (ICU) were retrospectively collected. Propensity Score Matching (PSM) analysis was used to balance baseline differences between HF patients with and without HH. Kaplan Meier analysis and multivariate Cox analysis were used to determining the effect of HH on the survival of CF patients. For developing a model that can predict 30-day mortality in CF patients with HH, the feature recurrence elimination (RFE) method was applied to feature selection, and seven machine learning algorithms were employed to model construction. After training and hyper-parameter optimization (HPO) of the model through cross-validation in the training set, a performance comparison was performed through internal and external validation. To interpret the optimal model, Shapley Additive Explanations (SHAP) were used along with the Local Interpretable Model-agnostic Explanations (LIME) and the Partial Dependence Plot (PDP) techniques. Results: The incidence of HH was 6.5% in HF patients in the MIMIC cohort. HF patients with HH had a 30-day mortality rate of 33% and a 1-year mortality rate of 51%, and HH was an independent risk factor for increased short-term and long-term mortality risk in HF patients. After RFE, 21 key features (21/56) were selected to build the model. Internal validation and external validation suggested that Categorical Boosting (Catboost) had a higher discriminatory capability than the other models (internal validation: AUC, 0.832; 95% CI, 0.819-0.845; external validation: AUC, 0.757 95% CI, 0.739-0.776), and the simplified Catboost model (S-Catboost) also had good performance in both internal validation and external validation (internal validation: AUC, 0.801; 95% CI, 0.787-0.813; external validation: AUC, 0.729, 95% CI, 0.711-0.745). Conclusion: HH was associated with increased mortality in HF patients. Machine learning methods had good performance in identifying the 30-day mortality risk of HF with HH. With interpretability techniques, the transparency of machine learning models has been enhanced to facilitate user understanding of the prediction results.

3.
J Neuroinflammation ; 19(1): 120, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35624475

ABSTRACT

BACKGROUND: The danger-associated molecular patterns (DAMPs) are critical contributors to the progressive neuropathology and thereafter affect the functional outcomes following spinal cord injury (SCI). Up to now, the regulatory mechanisms on their inducible production from the living cells remain elusive, aside from their passive release from the necrotic cells. Thrombin is immediately activated by the damaged or stressed central nervous system (CNS), which potently mediates inflammatory astrocytic responses through proteolytic cleavage of protease-activated receptors (PARs). Therefore, SCI-activated thrombin is conceived to induce the production of DAMPs from astrocytes at lesion site. METHODS: Rat SCI model was established by the cord contusion at T8-T10. The expression of thrombin and macrophage migration inhibitory factor (MIF) was determined by ELISA and Western blot. The PAR1, PAR3, and PAR4 receptors of thrombin were examined by PCR and immunohistochemistry. Primary astrocytes were isolated and purified from the spinal cord, followed by stimulation with different concentrations of thrombin either for transcriptome sequencing or for analysis of thrombin-mediated expression of MIF and related signal pathways in the presence or absence of various inhibitors. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS: MIF protein levels were significantly elevated in parallel with those of thrombin induced by SCI. Immunostaining demonstrated that PAR1 receptor, together with MIF, was abundantly expressed in astrocytes. By transcriptome sequencing and bioinformatical analysis of thrombin-stimulated primary astrocytes, MIF was identified to be dynamically regulated by the serine protease. Investigation of the underlying mechanism using various inhibitors revealed that thrombin-activated PAR1 was responsible for the MIF production of astrocytes through modulation of JNK/NFκB pathway. Administration of PAR1 inhibitor at lesion sites following SCI significantly reduced the protein levels of MIF and ameliorated functional deficits of rat locomotion. CONCLUSION: SCI-activated thrombin is a robust inducer of MIF production from astrocytes. Exploring the roles of thrombin in promoting the production of DAMPs from astrocytes at lesion site will provide an alternative strategy for the clinical therapy of CNS inflammation.


Subject(s)
Macrophage Migration-Inhibitory Factors , Spinal Cord Injuries , Animals , Astrocytes/metabolism , Macrophage Migration-Inhibitory Factors/pharmacology , Rats , Receptor, PAR-1/metabolism , Spinal Cord Injuries/metabolism , Thrombin/metabolism , Thrombin/pharmacology
4.
J Cardiovasc Transl Res ; 15(5): 1176-1191, 2022 10.
Article in English | MEDLINE | ID: mdl-35377129

ABSTRACT

Angina pectoris is the most common manifestation of coronary heart disease, causing suffering in patients. Electroacupuncture at PC6 can effectively alleviate angina by regulating the expression of genes, whether the alternative splicing (AS) of genes is affected by acupuncture is still unknown. We established a rat model of myocardial ischemia-reperfusion by coronary artery ligation and confirmed electroacupuncture alleviated the abnormal discharge caused by angina pectoris measured in EMG electromyograms. Analysis of the GSE61840 dataset established that AS events were altered after I/R and regulated by electroacupuncture. I/R decreased the expression of splicing factor Nova1 while electroacupuncture rescued it. Further experiments in dorsal root ganglion cells showed Nova1 regulated the AS of the GABRG2, specifically on its exon 9 where an important phosphorylation site is present. In vivo, results also showed that electroacupuncture can restore AS of GABRG2. Our results proved that electroacupuncture alleviates angina results by regulating alternative splicing.


Subject(s)
Electroacupuncture , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Rats , Acupuncture Points , Alternative Splicing , Angina Pectoris , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Receptors, Neurotransmitter , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...