Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-35116066

ABSTRACT

Nonalcoholic steatohepatitis (NASH) may develop into cirrhosis and liver cancer, which imposes a great burden to individuals and society. Lingguizhugan decoction is a commonly used dampness dispelling medication in traditional Chinese medicine and is often used to treat those with phlegm and retained fluid from various causes and pathogeneses. The objective of this study was to explore the effect and mechanism of modified Lingguizhugan decoction (MLGZG) on lipid metabolism and the inflammatory response to identify a theoretical basis to promote its clinical application in NASH therapy. After treatment with MLGZG for 8 weeks, the weight of high-fat-diet (HFD)-fed NASH rats was significantly higher than that of rats in the normal group, and the weights in each dose group were significantly lower than those in the model group. The treatment groups (low, medium, and high doses) had different degrees of improvement in the changes in hepatocyte tissue structure, steatosis, and inflammatory infiltration. Compared with that in the normal group, the expression of TNF receptor-associated factor-3 (TRAF-3) and nuclear factor κB (NFκB) in the model group significantly increased to varying degrees. Compared with the NASH group, the treatment groups (low, middle, and high doses) showed modified lipid metabolism gene expression and decreased inflammatory factor expression levels. Modified Lingguizhugan decoction can improve the general condition of rats with nonalcoholic fatty liver disease by reducing the expression levels of TRAF3, NF-κB, the Toll-like receptor 4 (TLR-4) pathway, and related proteins, as well as the expression levels of lipid metabolism genes and cytokines.

3.
Dose Response ; 19(4): 15593258211057768, 2021.
Article in English | MEDLINE | ID: mdl-34887716

ABSTRACT

Background: Brain exposure to ionizing radiation during the radiotherapy of brain tumor or metastasis of peripheral cancer cells to the brain has resulted in cognitive dysfunction by reducing neurogenesis in hippocampus. The water extract of Lycium barbarum berry (Lyc), containing water-soluble Lycium barbarum polysaccharides and flavonoids, can protect the neuronal injury by reducing oxidative stress and suppressing neuroinflammation. Reseach Design: To demonstrate the long-term radioprotective effect of Lyc, we evaluated the neurobehavioral alterations and the numbers of NeuN, calbindin (CB), and parvalbumin (PV) immunopositive hippocampal neurons in BALB/c mice after acute 5.5 Gy radiation with/without oral administration of Lyc at the dosage of 10 g/kg daily for 4 weeks. Results: The results showed that Lyc could improve irradiation-induced animal weight loss, depressive behaviors, spatial memory impairment, and hippocampal neuron loss. Immunohistochemistry study demonstrated that the loss of NeuN-immunopositive neuron in the hilus of the dentate gyrus, CB-immunopositive neuron in CA1 strata radiatum, lacunosum moleculare and oriens, and PV-positive neuron in CA1 stratum pyramidum and stratum granulosum of the dentate gyrus after irradiation were significantly improved by Lyc treatment. Conclusion: The neuroprotective effect of Lyc on those hippocampal neurons may benefit the configuration of learning related neuronal networks and then improve radiation induced neurobehavioral changes such as cognitive impairment and depression. It suggests that Lycium barbarum berry may be an alternative food supplement to prevent radiation-induced neuron loss and neuropsychological disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...