Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Nanobiotechnology ; 20(1): 25, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991615

ABSTRACT

BACKGROUND: The regeneration and repair of articular cartilage remains a major challenge for clinicians and scientists due to the poor intrinsic healing of this tissue. Since cartilage injuries are often clinically irregular, tissue-engineered scaffolds that can be easily molded to fill cartilage defects of any shape that fit tightly into the host cartilage are needed. METHOD: In this study, bone marrow mesenchymal stem cell (BMSC) affinity peptide sequence PFSSTKT (PFS)-modified chondrocyte extracellular matrix (ECM) particles combined with GelMA hydrogel were constructed. RESULTS: In vitro experiments showed that the pore size and porosity of the solid-supported composite scaffolds were appropriate and that the scaffolds provided a three-dimensional microenvironment supporting cell adhesion, proliferation and chondrogenic differentiation. In vitro experiments also showed that GelMA/ECM-PFS could regulate the migration of rabbit BMSCs. Two weeks after implantation in vivo, the GelMA/ECM-PFS functional scaffold system promoted the recruitment of endogenous mesenchymal stem cells from the defect site. GelMA/ECM-PFS achieved successful hyaline cartilage repair in rabbits in vivo, while the control treatment mostly resulted in fibrous tissue repair. CONCLUSION: This combination of endogenous cell recruitment and chondrogenesis is an ideal strategy for repairing irregular cartilage defects.


Subject(s)
Chondrogenesis/drug effects , Decellularized Extracellular Matrix , Hydrogels , Oligopeptides , Tissue Scaffolds/chemistry , Animals , Cartilage, Articular/cytology , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Mesenchymal Stem Cells/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Rabbits , Tissue Engineering/methods
2.
Stem Cells Int ; 2021: 5590479, 2021.
Article in English | MEDLINE | ID: mdl-34912460

ABSTRACT

Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.

3.
Stem Cells Int ; 2020: 5690252, 2020.
Article in English | MEDLINE | ID: mdl-32676118

ABSTRACT

Hyaline articular cartilage lacks blood vessels, lymphatics, and nerves and is characterised by limited self-repair ability following injury. Traditional techniques of articular cartilage repair and regeneration all have certain limitations. The development of tissue engineering technology has brought hope to the regeneration of articular cartilage. The strategies of tissue-engineered articular cartilage can be divided into three types: "cell-scaffold construct," cell-free, and scaffold-free. In "cell-scaffold construct" strategies, seed cells can be autologous chondrocytes or stem. Among them, some commercial products with autologous chondrocytes as seed cells, such as BioSeed®-C and CaReS®, have been put on the market and some products are undergoing clinical trials, such as NOVOCART® 3D. The stem cells are mainly pluripotent stem cells and mesenchymal stem cells from different sources. Cell-free strategies that indirectly utilize the repair and regeneration potential of stem cells have also been used in clinical settings, such as TruFit and MaioRegen. Finally, the scaffold-free strategy is also a new development direction, and the short-term repair results of related products, such as NOVOCART® 3D, are encouraging. In this paper, the commonly used techniques of articular cartilage regeneration in surgery are reviewed. By studying different strategies and different seed cells, the clinical application status of tissue-engineered articular cartilage is described in detail.

4.
Acta Biomater ; 113: 196-209, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32561472

ABSTRACT

Considering the intrinsic poor self-healing capacity of meniscus, tissue engineering has become a new direction for the treatment of meniscus lesions. However, disturbed by mechanical stability and biocompatibility, most meniscus implants fail to relieve symptoms and prevent the development of osteoarthritis. The goal of this study was to develop a potential meniscal substitute for clinical application. Here, silk fibroin with good mechanical performance and biocompatibility, and strontium ion acting as bioactive factor, were incorporated with Ɛ-Polycaprolactone to fabricate a meniscus scaffold (SP-Sr). By the wet-electrospun method, the 3D SP-Sr provided suitable pore size (100-200 µm) and enough mechanical support (61.6 ± 2.9 MPa for tensile modulus and 0.11 ± 0.03 MPa for compressive modulus). Moreover, after addition of Sr2+, the SP-Sr seeded by rabbit adipose tissue-derived stromal cells (rADSCs) showed the highest secretion with 2.61- and 2.98-fold increase in collagen and aggrecan, respectively, compared with SF/PCL group. And the extracellular matrix related genes expression in SP-Sr also showed upregulation results. Particularly, the expression of the collagen II gene, which played a crucial role in the formation of meniscal inner avascular region, showed a 9-fold increase in SP-Sr compared with pure PCL group. Furthermore, the MRI results of SP-Sr implanted in rabbits with total meniscectomy for 6 months demonstrated effective prevention of meniscus extrusion and relieving joint space narrowing compared with meniscectomy group. And the effects of cartilage protection and delaying osteoarthritis development were confirmed by Pathological examination. Especially, after 6-month implantation, the neo-menisci showed similar structural constituent and mechanical performance. STATEMENT OF SIGNIFICANCE: Meniscus regeneration faces great challenge due to the meniscus having limited healing potential owing to its anisotropic structure, its hypocellularity and hypovascularity. The present tissue engineering solutions have failed to maintain the biological function for meniscus reconstruction in vivo because of fragile and poor biocompatible materials, leading to long-term joint degeneration. The goal of this study was to develop a meniscal substitute potential for clinical application. Here, silk fibroin and strontium were incorporated with Ɛ-Polycaprolactone by wet-electrospinning method to fabricate a meniscus scaffold (SP-Sr). The 6-month implantation results revealed that SP-Sr scaffold was effective in preventing meniscus extrusion, cartilage protection and delaying osteoarthritis development, and the regenerated menisci showed similar structural constituent and mechanical performance.


Subject(s)
Fibroins , Meniscus , Tissue Engineering , Animals , Rabbits , Regeneration , Tissue Scaffolds
5.
J Mater Chem B ; 7(46): 7314-7325, 2019 12 14.
Article in English | MEDLINE | ID: mdl-31674636

ABSTRACT

Vascular stent interventional therapy, as a regular and effective therapy, has been widely used to treat coronary artery diseases. However, adverse events occur frequently after stent intervention, especially restenosis and late stent thrombosis. The targeted implanting site will suffer from severe atherosclerosis, which is considered as a chronic inflammatory disease. Meanwhile, with the over-expanding use of endovascular mechanical intervention, vascular injury has become an increasingly common issue. Lesions and newly induced vascular injury result in inflammatory and oxidative stress; meanwhile, activated macrophages and granulocytes generate high levels of reactive oxygen species (ROS), contributing to endothelial dysfunction and neointima hyperplasia. Therefore, attenuating oxidative stress and reducing ROS generation in the inflammatory response represent reasonable strategies to inhibit intimal hyperplasia and restenosis. Herein, we have developed a multifunctional surface for the MgZnYNd alloy with tannic acid (TA) coating, and the pH dependence of the coating deposition is also demonstrated. The phenolic hydroxyl groups on the coatings endow the modified surface with excellent antioxidant functions. We found that the coating can be recycled, and the scavenging activity hardly weakened within five cycles. Also, the TA coating has a promising strong antioxidant activity as it shows a radical scavenging activity over 80% in long term. Moreover, the TA coating possesses platelet-repellent capability. No significant inflammatory response was observed for the TA modified sample in the rat subcutaneous implantation test. Combining these performances, we envision that the vascular stent modified with TA coating can have great potential in various applications by virtue of its simplicity and effectiveness.


Subject(s)
Alloys/chemistry , Antioxidants/chemistry , Blood Platelets/drug effects , Fluorides/chemistry , Stents , Tannins/chemistry , Animals , Biphenyl Compounds/chemistry , Cell Proliferation , Coronary Restenosis/prevention & control , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrogen-Ion Concentration , Inflammation , Neodymium/chemistry , Oxidative Stress , Picrates/chemistry , Platelet Adhesiveness , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/chemistry , Thrombosis/prevention & control , Zinc/chemistry
6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(8): 1011-1018, 2019 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-31407562

ABSTRACT

OBJECTIVE: To manufacture a poly (lactic-co-glycolic acid) (PLGA) scaffold by low temperature deposition three-dimensional (3D) printing technology, prepare a PLGA/decellularized articular cartilage extracellular matrix (DACECM) cartilage tissue engineered scaffold by combining DACECM, and further investigate its physicochemical properties. METHODS: PLGA scaffolds were prepared by low temperature deposition 3D printing technology, and DACECM suspensions was prepared by modified physical and chemical decellularization methods. DACECM oriented scaffolds were prepared by using freeze-drying and physicochemical cross-linking techniques. PLGA/DACECM oriented scaffolds were prepared by combining DACECM slurry with PLGA scaffolds. The macroscopic and microscopic structures of the three kinds of scaffolds were observed by general observation and scanning electron microscope. The chemical composition of DACECM oriented scaffold was analyzed by histological and immunohistochemical stainings. The compression modulus of the three kinds of scaffolds were measured by biomechanical test. Three kinds of scaffolds were embedded subcutaneously in Sprague Dawley rats, and HE staining was used to observe immune response. The chondrocytes of New Zealand white rabbits were isolated and cultured, and the three kinds of cell-scaffold complexes were prepared. The growth adhesion of the cells on the scaffolds was observed by scanning electron microscope. Three kinds of scaffold extracts were cultured with L-929 cells, the cells were cultured in DMEM culture medium as control group, and cell counting kit 8 (CCK-8) was used to detect cell proliferation. RESULTS: General observation and scanning electron microscope showed that the PLGA scaffold had a smooth surface and large pores; the surface of the DACECM oriented scaffold was rough, which was a 3D structure with loose pores and interconnected; and the PLGA/DACECM oriented scaffold had a rough surface, and the large hole and the small hole were connected to each other to construct a vertical 3D structure. Histological and immunohistochemical qualitative analysis demonstrated that DACECM was completely decellularized, retaining the glycosaminoglycans and collagen typeⅡ. Biomechanical examination showed that the compression modulus of DACECM oriented scaffold was significantly lower than those of the other two scaffolds ( P<0.05). There was no significant difference between PLGA scaffold and PLGA/DACECM oriented scaffold ( P>0.05). Subcutaneously embedded HE staining of the three scaffolds showed that the immunological rejections of DACECM and PLGA/DACECM oriented scaffolds were significantly weaker than that of the PLGA scaffold. Scanning electron microscope observation of the cell-scaffold complex showed that chondrocytes did not obviously adhere to PLGA scaffold, and a large number of chondrocytes adhered and grew on PLGA/DACECM oriented scaffold and DACECM oriented scaffold. CCK-8 assay showed that with the extension of culture time, the number of cells cultured in the three kinds of scaffold extracts and the control group increased. There was no significant difference in the absorbance ( A) value between the groups at each time point ( P>0.05). CONCLUSION: The PLGA/DACECM oriented scaffolds have no cytotoxicity, have excellent physicochemical properties, and may become a promising scaffold material of tissue engineered cartilage.


Subject(s)
Cartilage, Articular , Tissue Scaffolds , Animals , Cells, Cultured , Extracellular Matrix , Glycolates , Glycols , Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Printing, Three-Dimensional , Rabbits , Rats , Rats, Sprague-Dawley
7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(5): 628-633, 2019 May 15.
Article in Chinese | MEDLINE | ID: mdl-31090359

ABSTRACT

OBJECTIVE: Electrospinning technique was used to manufacture polycaprolactone (PCL)/collagen typeⅠ nanofibers orientated patches and to study their physical and chemical characterization, discussing their feasibility as synthetic patches for rotator cuff repairing. METHODS: PCL patches were prepared by electrospinning with 10% PCL electrospinning solution (control group) and PCL/collagen typeⅠorientated nanofibers patches were prepared by electrospinning with PCL electrospinning solution with 25% collagen type Ⅰ(experimental group). The morphology and microstructure of the two patches were observed by gross and scanning electron microscopy, and the diameter and porosity of the fibers were measured; the mechanical properties of the patches were tested by uniaxial tensile test; the composition of the patches was analyzed by Fourier transform infrared spectroscopy; and the contact angle of the patch surface was measured. Two kinds of patch extracts were co-cultured with the third generation of rabbit tendon stem cells. Cell counting kit 8 (CCK-8) was used to detect the toxicity and cell proliferation of the materials. Normal cultured cells were used as blank control group. Rabbit tendon stem cells were co-cultured with the two patches and stained with dead/living cells after 3 days of in vitro culture, and laser confocal scanning microscopy was used to observe the cell adhesion and activity on the patch. RESULTS: Gross and scanning electron microscopy showed that the two patch fibers were arranged in orientation. The diameter of patch fibers in the experimental group was significantly smaller than that in the control group ( t=26.907, P=0.000), while the porosity in the experimental group was significantly larger than that in the control group ( t=2.506, P=0.032). The tensile strength and Young's modulus of the patch in the experimental group were significantly higher than those in the control group ( t=3.705, P=0.029; t=4.064, P=0.034). Infrared spectrum analysis showed that PCL and collagen type Ⅰ were successfully mixed in the experimental group. The surface contact angle of the patch in the experimental group was (73.88±4.97)°, which was hydrophilic, while that in the control group was (128.46±5.10) °, which was hydrophobic. There was a significant difference in the surface contact angle between the two groups ( t=21.705, P=0.002). CCK-8 test showed that with the prolongation of culture time, the cell absorbance ( A) value increased gradually in each group, and there was no significant difference between the experimental group and the control group at each time point ( P>0.05). Laser confocal scanning microscopy showed that rabbit tendon stem cells could adhere and grow on the surface of both patches after 3 days of culture. The number of cells adhered to the surface of the patches in the experimental group was more than that in the control group, and the activity was better. CONCLUSION: PCL/ collagen type Ⅰ nanofibers orientated patch prepared by electrospinning technology has excellent physical and chemical properties, cell adhesion, and no cytotoxicity. It can be used as an ideal scaffold material in tendon tissue engineering for rotator cuff repair in the future.


Subject(s)
Nanofibers , Rotator Cuff , Tissue Scaffolds , Animals , Cell Proliferation , Collagen , Polyesters , Rabbits , Tissue Engineering
8.
Tissue Eng Part B Rev ; 25(3): 187-201, 2019 06.
Article in English | MEDLINE | ID: mdl-30608012

ABSTRACT

IMPACT STATEMENT: This article primarily reviews the applications of three-dimensional printing in cartilage tissue engineering at different anatomical locations and summarizes their strengths and limitations. In addition, we believe that four-dimensional concept and biological microenvironment should not be ignored for functional cartilage regeneration in the future. Finally, we hope the review provide scientist inspiration with constructing anisotropic tissue-engineered organ or tissue.


Subject(s)
Cartilage/cytology , Printing, Three-Dimensional/instrumentation , Regeneration , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Humans
9.
ACS Biomater Sci Eng ; 5(7): 3279-3292, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-33405571

ABSTRACT

Bioabsorbable magnesium alloys are becoming prominent materials for cardiovascular stents, as their desirable mechanical properties and favorable biosafety. However, the rapid corrosion of magnesium alloys under physiological conditions hinders their wider application as medical implant materials. Fluoride chemical conversion treatment is an effective and simple technique to improve the corrosion resistance for magnesium alloys. Despite previous literature reporting on fluoride chemical conversion treatment with hydrofluoric acid (HF) in different conditions, some defects are still present on the surface of the coating. In this study, we report on a two-step alkali-fluoride treatment of magnesium alloy by effectively removing the second phase in the substrate surface and form a dense and flawless magnesium fluoride (MgF2) coating to endow the magnesium alloy greater corrosion resistance. The results showed that the serious pitting corrosion caused by galvanic corrosion could be effectively prevented after removing of the second phase of the surface. In vivo tests in a rat subcutaneous implantation model showed that two-step alkali-fluoride-treated MgZnYNd alloy (MgZnYNd-A-F) uniformly corroded with a low corrosion rate. No subcutaneous gas cavities or significant inflammatory cell infiltration were observed for MgZnYNd-A-F in in vivo tests. The two-step alkali-fluoride treatment can significantly improve the corrosion resistance and biocompatibility of magnesium alloy, which has great potential in the application of vascular stents because of its simplicity and effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...