Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Math Biosci Eng ; 20(9): 15641-15671, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37919984

ABSTRACT

In this paper, we propose a SVEIR-I epidemic model with media coverage in a spatially heterogeneous environment, and study the role of media coverage in the spread of diseases in a spatially heterogeneous environment. In a spatially heterogeneous environment, we first set up the well-posedness of the model. Then, we define the basic reproduction number $ R_0 $ of the model and establish the global dynamic threshold criteria: when $ R_0 < 1 $, disease-free steady state is globally asymptotically stable, while when $ R_0 > 1 $, the model is uniformly persistent. In addition, the existence and uniqueness of the equilibrium state of endemic diseases were obtained when $ R_0 > 1 $ in homogeneous space and heterogeneous diffusion environment. Further, by constructing appropriate Lyapunov functions, the global asymptotic stability of disease-free and positive steady states was established. Finally, through numerical simulations, it is shown that spatial heterogeneity can increase the risk of disease transmission, and can even change the threshold for disease transmission; media coverage can make people more widely understand disease information, and then reduce the effective contact rate to control the spread of disease.


Subject(s)
Epidemics , Models, Biological , Humans , Incidence , Basic Reproduction Number
2.
Math Biosci Eng ; 20(4): 7171-7192, 2023 02 10.
Article in English | MEDLINE | ID: mdl-37161146

ABSTRACT

In this paper, we propose a two-patch model with border control to investigate the effect of border control measures and local non-pharmacological interventions (NPIs) on the transmission of COVID-19. The basic reproduction number of the model is calculated, and the existence and stability of the boundary equilibria and the existence of the coexistence equilibrium of the model are obtained. Through numerical simulation, when there are no unquarantined virus carriers in the patch-2, it can be concluded that the reopening of the border with strict border control measures to allow people in patch-1 to move into patch-2 will not lead to disease outbreaks. Also, when there are unquarantined virus carriers in patch-2 (or lax border control causes people carrying the virus to flow into patch-2), the border control is more strict, and the slower the growth of number of new infectious in patch-2, but the strength of border control does not affect the final state of the disease, which is still dependent on local NPIs. Finally, when the border reopens during an outbreak of disease in patch-2, then a second outbreak will happen.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Basic Reproduction Number , Computer Simulation
3.
Z Angew Math Phys ; 74(3): 124, 2023.
Article in English | MEDLINE | ID: mdl-37252013

ABSTRACT

Incorporating humoral immunity, cell-to-cell transmission and degenerated diffusion into a virus infection model, we investigate a viral dynamics model in heterogenous environments. The model is assumed that the uninfected and infected cells do not diffuse and the virus and B cells have diffusion. Firstly, the well-posedness of the model is discussed. And then, we calculated the reproduction number R0 account for virus infection, and some useful properties of R0 are obtained by means of the Kuratowski measure of noncompactness and the principle eigenvalue. Further, when R0<1, the infection-free steady state is proved to be globally asymptotically stable. Moreover, to discuss the antibody response reproduction number R~0 of the model and the global dynamics of virus infection, including the global stability infection steady state and the uniform persistence of infection, and to obtain the k-contraction of the model with the Kuratowski measure of noncompactness, a special case of the model is considered. At the same time, when R0>1 and R~0<1 (R~0>1), we obtained a sufficient condition on the global asymptotic stability of the antibody-free infection steady state (the uniform persistence and global asymptotic stability of infection with antibody response). Finally, the numerical examples are presented to illustrate the theoretical results and verify the conjectures.

4.
ACS Biomater Sci Eng ; 8(6): 2526-2536, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35612599

ABSTRACT

Ovarian cancer (OV) seriously damages women's health because of refractory OV and the development of platinum (Pt) resistance. New treatment strategies are urgently needed to deal with the treatment of cisplatin-resistant OV. Here, a reduction-sensitive pegylated Pt(IV) prodrug was synthesized by amidation of methoxy polyethylene glycol amine (PEG750-NH2) with monocarboxylic Pt(IV) prodrug (Pt(IV)-COOH). Then alantolactone (AL) loaded PEG-Pt(IV) nanocarriers (NP(Pt)@AL) were prepared. In the cisplatin-resistant model of OV, cancer cells actively ingest NP(Pt)@AL through endocytosis, and AL and Pt(II) were disintegrated and released under high intracellular reductant condition. The activity of thioredoxin reductase 1 (TrxR1) inhibited by AL and the adducts of Pt(II) with mitochondrial DNA (mDNA) can costimulate reactive oxygen species (ROS) and reactivate the mitochondrial pathway of apoptosis. Meanwhile, Pt(II) binds with nuclear DNA (nDNA) to jointly promote cell apoptosis. Both in vitro and in vivo results demonstrated that NP(Pt)@AL could effectively reverse the drug resistance and displayed excellent synergistic therapeutic efficacy on platinum-resistant OV with high safety. Therefore, reactivation of the mitochondrial pathway of apoptosis would be a potential strategy to improve the therapeutic effect of Pt-based chemotherapy and even reverse drug resistance.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Prodrugs , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Female , Humans , Lactones , Ovarian Neoplasms/drug therapy , Platinum/pharmacology , Platinum/therapeutic use , Polyethylene Glycols/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use , Sesquiterpenes, Eudesmane
5.
Mol Plant Microbe Interact ; 34(5): 511-523, 2021 May.
Article in English | MEDLINE | ID: mdl-33630651

ABSTRACT

Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Mesorhizobium , Rhizobium , Robinia , Mesorhizobium/genetics , Symbiosis , Type III Secretion Systems/genetics
6.
J Exp Bot ; 71(22): 7347-7363, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32865563

ABSTRACT

Nodulation outer proteins secreted via type 3 secretion systems are involved in the process of symbiosis between legume plants and rhizobia. To study the function of NopT in symbiosis, we mutated nopT in Mesorhizobium amphore CCNWGS0123 (GS0123), which can nodulate black locust (Robinia pseudoacacia). The nopT mutant induced higher levels of jasmonic acid, salicylic acid, and hydrogen peroxide accumulation in the roots of R. pseudoacacia compared with wild-type GS0123. The ΔnopT mutant induced higher disease-resistant gene expression 72 hours post-inoculation (hpi), whereas GS0123 induced higher disease-resistant gene expression earlier, at 36 hpi. Compared with the nopT mutant, GS0123 induced the up-regulation of most genes at 36 hpi and the down-regulation of most genes at 72 hpi. Proteolytically active NopT_GS0123 induced hypersensitive responses when expressed transiently in tobacco leaves (Nicotiana benthamiana). Two NopT_GS0123 targets in R. pseudoacacia were identified, ATP-citrate synthase alpha chain protein 2 and hypersensitive-induced response protein. Their interactions with NopT_GS0123 triggered resistance by the plant immune system. In conclusion, NopT_GS0123 inhibited the host plant immune system and had minimal effect on nodulation in R. pseudoacacia. Our results reveal the underlying molecular mechanism of NopT function in plant-symbiont interactions.


Subject(s)
Mesorhizobium , Rhizobium , Robinia , Plant Roots , Robinia/genetics , Symbiosis
7.
Chem Commun (Camb) ; 56(30): 4212-4215, 2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32175531

ABSTRACT

As a promising candidate for CO2 electroreduction, metal chalcogenides suffer from limited carrier density, which hampers the electron transport of electrocatalysts and activation of CO2. Herein, we have modified In2S3 nanosheets by in situ forming metallic In nanoparticles for enhanced CO2 electroreduction. The In-In2S3 hybrid nanosheets exhibited a remarkable geometrical current density of 70.3 mA cm-2 at -1.1 V vs. RHE, with 62.1 mA cm-2 for the carbonaceous product. The faradaic efficiency of the In-In2S3 hybrid nanosheets for the carbonaceous product reached 90% at -1.0 V vs. RHE, including 76% for formate production and 14% for CO production. The mechanistic study revealed that the improved performance by forming In nanoparticles on In2S3 nanosheets originated from the increased carrier density of the electrocatalysts and the decreased work function, which benefited the CO2 activation.

9.
Tree Physiol ; 39(9): 1533-1550, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31274160

ABSTRACT

Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.


Subject(s)
Mesorhizobium , Robinia , Symbiosis , Type III Secretion Systems
10.
Stand Genomic Sci ; 13: 18, 2018.
Article in English | MEDLINE | ID: mdl-30250634

ABSTRACT

Mesorhizobium amorphae CCNWGS0123 was isolated in 2006, from effective nodules of Robinia pseudoacacia L. grown in lead-zinc mine tailing site, in Gansu Province, China. M. amorphae CCNWGS0123 is an aerobic, Gram-negative, non-spore-forming rod strain. This paper characterized M. amorphae CCNWGS0123 and presents its complete genome sequence information and genome annotation. The 7,374,589 bp long genome which encodes 7136 protein-coding genes and 63 RNA coding genes, contains one chromosome and four plasmids. Moreover, a chromosome with no gaps was assembled.

11.
Plasmid ; 96-97: 13-24, 2018.
Article in English | MEDLINE | ID: mdl-29608935

ABSTRACT

In the present study, complete genomic sequences retrieved from 57 rhizobial strains that covered four genera including 11 species were analyzed comprehensively. The four types of replicons: chromosomes, chromids, nonsymbiotic plasmids, and symbiotic plasmids were investigated and compared among these strains. Results showed that co-evolution occurred among these four replicons based on the similarities in average nucleotide identity. High correlation coefficient r values were observed between chromosomes and chromids, as well as between chromosomes and nonsymbiotic plasmids. Chromosomes and symbiotic plasmids showed different phylogenetic topology based on their core genes. Population structure analyses were performed to extrapolate the evolutionary histories of the test strains based on their chromosomal and symbiotic plasmid background. This resulted in seven ancestral types for chromosomal genes and three ancestral types for symbiotic plasmid genes. Rhizobial strains containing chromosome genes with ancestral type E tend to contain symbiotic plasmid genes with ancestral type II, while rhizobial strains containing chromosome genes with ancestral type G tend to contain symbiotic plasmid genes with ancestral type III. Seventeen strains associated with different host plant species which harbored the symbiotic genes with ancestral type I, exhibited high genetic diversity. In addition, Fu's test of the symbiotic plasmid genes with ancestral type III had undergone an expansion event, implying the influence of negative selection on these symbiotic plasmid genes.


Subject(s)
Chromosomes, Bacterial/chemistry , Evolution, Molecular , Phylogeny , Plants/microbiology , Plasmids/chemistry , Rhizobium/genetics , Genetic Variation , Plant Root Nodulation/physiology , Plasmids/classification , Plasmids/metabolism , Replicon , Rhizobium/classification , Selection, Genetic , Symbiosis/physiology
12.
J Theor Biol ; 446: 212-228, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29499250

ABSTRACT

In this paper, a parasitism-mutualism-predation model is proposed to investigate the dynamics of multi-interactions among cuckoos, crows and cats with stage-structure and maturation time delays on cuckoos and crows. The crows permit the cuckoos to parasitize their nestlings (eggs) on the crow chicks (eggs). In return, the cuckoo nestlings produce a malodorous cloacal secretion to protect the crow chicks from predation by the cats, which is apparently beneficial to both the crow and cuckoo population. The multi-interactions, i.e., parasitism and mutualism between the cuckoos (nestlings) and crows (chicks), predation between the cats and crow chicks are modeled both by Holling-type II and Beddington-DeAngelis-type functional responses. The existence of positive equilibria of three subsystems of the model are discussed. The criteria for the global stability of the trivial equilibrium are established by the Krein-Rutman theorem and other analysis methods. Moreover, the threshold dynamics for the coexistence and weak persistence of the model are obtained, and we show, both analytically and numerically, that the stabilities of the interior equilibria may change with the increasing maturation time delays. We find there exists an evident difference in the dynamical properties of the parasitism-mutualism-predation model based on whether or not we consider the effects of stage-structure and maturation time delays on cuckoos and crows. Inclusion of stage structure results in many varied dynamical complexities which are difficult to encompass without this inclusion.


Subject(s)
Cats/physiology , Crows/physiology , Models, Biological , Passeriformes/physiology , Predatory Behavior/physiology , Symbiosis , Animals
13.
Front Microbiol ; 9: 263, 2018.
Article in English | MEDLINE | ID: mdl-29515545

ABSTRACT

Mesorhizobium alhagi CCNWXJ12-2T, isolated from root nodules of the desert plant Alhagi sparsifolia, contains two type III secretion systems (T3SSs). T3SSs are specialized machinery with wide distribution in bacteria that inject effector proteins into target cells. Our previous study showed that the expression of M. alhagi T3SS1 is upregulated in high-salt conditions. Here, phylogenetic analysis of T3SS1 using the core protein RhcU suggested that T3SS1 belongs to the α-Rhc II subgroup of the Rhc T3SS family. To elaborate the function of M. alhagi CCNWXJ12-2T T3SS1 in stress adaption, two T3SS1 mutants (ΔrhcQ and ΔMA29250) were constructed and analyzed. ß-galactosidase transcriptional fusion assays showed that activity of the promoter of T3SS1 was induced by salts. Mutant ΔrhcQ was more sensitive to NaCl and LiCl than the wild-type, but ΔMA29250 was not. Both mutants were more sensitive to KCl than the wild-type. The intracellular Na+ concentration in ΔrhcQ in high-NaCl conditions (0.4 M) increased by 37% compared to that of the wild-type strain, while the Na+ concentration in ΔMA29250 increased by 13%. The K+ concentration in both mutants increased by 16% compared to the wild-type in high-KCl conditions (0.3 M). Strain ΔrhcQ showed decreased survival compared to the wild-type after treatment with H2O2, while the survival rate of ΔMA29250 was almost the same as that of the wild-type. Antioxidant enzyme activities in ΔrhcQ were lower than those in the wild-type strain, but this was not the case for ΔMA29250. Our data elucidate the beneficial effects of T3SS1 in the adaption of M. alhagi CCNWXJ12-2T to stress.

14.
Environ Pollut ; 225: 497-505, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28336094

ABSTRACT

Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl2) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for ß-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants.


Subject(s)
Bacteria/metabolism , Soil Microbiology , Alkanes/metabolism , Bacteria/classification , Ecosystem , Hydrocarbons/metabolism , Phenanthrenes/metabolism , Soil Pollutants/metabolism , Stochastic Processes
15.
Appl Microbiol Biotechnol ; 101(7): 2967-2978, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28097405

ABSTRACT

Mesorhizobium alhagi, a legume-symbiont soil bacterium that forms nodules with the desert plant Alhagi sparsifolia, can produce large amounts of exopolysaccharide (EPS) using mannitol as carbon source. However, the role of EPS in M. alhagi CCNWXJ12-2T, an EPS-producing rhizobium with high salt resistance, remains uncharacterized. Here, we studied the role of EPS in M. alhagi CCNWXJ12-2T using EPS-deficient mutants constructed by transposon mutagenesis. The insertion sites of six EPS-deficient mutants were analyzed using single primer PCR, and two putative gene clusters were found to be involved in EPS synthesis. EPS was extracted and quantified, and EPS production in the EPS-deficient mutants was decreased by approximately 25 times compared with the wild-type strain. Phenotypic analysis revealed reduced salt resistance, antioxidant capacity, and cell motility of the mutants compared with the wild-type strain. In conclusion, our results indicate that EPS can influence cellular Na+ content and antioxidant enzyme activity, as well as play an important role in the stress adaption and cell motility of M. alhagi CCNWXJ12-2T.


Subject(s)
Mesorhizobium/drug effects , Mesorhizobium/physiology , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Antioxidants/metabolism , Base Sequence , DNA Transposable Elements , Fabaceae/microbiology , Mesorhizobium/genetics , Movement/drug effects , Multigene Family , Mutagenesis , Plant Roots/microbiology , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/deficiency , Stress, Physiological/genetics , Symbiosis
16.
BMC Microbiol ; 16(1): 227, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27686068

ABSTRACT

BACKGROUND: Serine/threonine protein kinases are highly conserved kinases with a wide distribution in microbes and with multiple functions. Mesorhizobium alhagi CCNWXJ12-2, a α-proteobacterium which could be able to form symbiosis with Alhagi sparsifolia in northwest of China, contains a putative PrkA-family serine protein kinase, PrkA. In our previous study, the expression of prkA was found to be downregulated in high-salt conditions. To elucidate the function of M. alhagi PrkA, a prkA deletion mutant was constructed and the phenotypes of the mutant were analyzed. RESULTS: The salt and alkaline tolerance and antioxidant capacity of the wild-type strain and the prkA deletion mutant was measured. Our results showed that the deletion mutant had higher salt and alkaline tolerance than the wild-type strain. The total cellular Na+ content was measured and showed no significant difference between the wild-type strain and the mutant. The prkA deletion mutant also showed a higher H2O2 tolerance than the wild-type strain. Therefore the activities of antioxidant enzymes were measured. Catalase activity was similar in the wild-type and the deletion mutant, while the superoxide dismutase activity in the mutant was higher than that in the wild-type. CONCLUSIONS: We firstly analyze the function of a serine protein kinase, PrkA, in M. alhagi. Our data indicate that PrkA could reduce the survival of M. alhagi under environmental stress and deletion of prkA dramatically improved the salt and alkaline tolerance and antioxidant capacity of M. alhagi.

17.
J Environ Sci (China) ; 27: 179-87, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25597676

ABSTRACT

To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.


Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Fabaceae/microbiology , Mesorhizobium/genetics , Sinorhizobium meliloti/genetics , Agrobacterium tumefaciens/physiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , China , Medicago/growth & development , Medicago/microbiology , Mesorhizobium/physiology , Metals, Heavy/metabolism , Molecular Sequence Data , Phylogeny , Plant Roots/growth & development , Plant Roots/microbiology , Protein Structure, Tertiary , Robinia/growth & development , Robinia/microbiology , Sinorhizobium meliloti/physiology , Soil Pollutants/metabolism
18.
BMC Microbiol ; 14: 1, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25539655

ABSTRACT

BACKGROUND: Mesorhizobium alhagi CCNWXJ12-2 is a α-proteobacterium which could be able to fix nitrogen in the nodules formed with Alhagi sparsifolia in northwest of China. Desiccation and high salinity are the two major environmental problems faced by M. alhagi CCNWXJ12-2. In order to identify genes involved in salt-stress adaption, a global transcriptional analysis of M. alhagi CCNWXJ12-2 growing under salt-free and high salt conditions was carried out. The next generation sequencing technology, RNA-Seq, was used to obtain the transcription profiles. RESULTS: We have compared the transcriptome of M. alhagi growing in TY medium under high salt conditions (0.4 M NaCl) with salt free conditions as a control. A total of 1,849 differentially expressed genes (fold change ≧ 2) were identified and 933 genes were downregulated while 916 genes were upregulated under high salt condition. Except for the upregulation of some genes proven to be involved in salt resistance, we found that the expression levels of protein secretion systems were changed under high salt condition and the expression levels of some heat shock proteins were reduced by salt stress. Notably, a gene encoding YadA domain-containing protein (yadA), a gene encoding trimethylamine methyltransferase (mttB) and a gene encoding formate--tetrahydrofolate ligase (fhs) were highly upregulated. Growth analysis of the three gene knockout mutants under salt stress demonstrated that yadA was involved in salt resistance while the other two were not. CONCLUSIONS: To our knowledge, this is the first report about transcriptome analysis of a rhizobia using RNA-Seq to elucidate the salt resistance mechanism. Our results showed the complex mechanism of bacterial adaption to salt stress and it was a systematic work for bacteria to cope with the high salinity environmental problems. Therefore, these results could be helpful for further investigation of the bacterial salt resistance mechanism.


Subject(s)
Gene Expression Profiling , Mesorhizobium/drug effects , Mesorhizobium/genetics , Osmotic Pressure , Salts/metabolism , China , Fabaceae/microbiology , High-Throughput Nucleotide Sequencing , Mesorhizobium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...