Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 85(4): 613-618, 2020 04.
Article in English | MEDLINE | ID: mdl-32237232

ABSTRACT

The unprecedented time-dependent long-range supramol-ecular assembly of electron-deficient hexaazatrinaphthylene (HATN) core based on peripheral crowding with three out-of-plane cyclic ketals is reported. The single-crystal X-ray structure of the diethyl derivative provided detailed information as to how four molecules in a repeating unit were packed in order to avoid steric crowding of the out-of-plane cyclic ketal side chain, providing locking and fastening for stabilizing the self-assembled structure. The polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) did not instantaneously show any phase transition upon the cooling process. To our surprise, POM images showed a nucleation of spherulite up to 100 µm after 24 hour later. X-ray diffraction data further confirmed that these soft crystal formed a hexagonal-like crystal. The long-range self-assembly of the new material showed a slight red shift in the UV-vis absorption spectra and further substantiated by computational method.

2.
Sci Rep ; 7(1): 14961, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097719

ABSTRACT

Dissolved gas analysis (DGA) is widely used in monitoring and diagnosing of power transformer, since the insulation material in the power transformer decomposes gases under abnormal operation condition. Among the gases, acetylene, as a symbol of low energy spark discharge and high energy electrical faults (arc discharge) of power transformer, is an important monitoring parameter. The current gas detection method used by the online DGA equipment suffers from problems such as cross sensitivity, electromagnetic compatibility and reliability. In this paper, an optical gas detection system based on TDLAS technology is proposed to detect acetylene dissolved in transformer oil. We selected a 1530.370 nm laser in the near infrared wavelength range to correspond to the absorption peak of acetylene, while using the wavelength modulation strategy and Herriott cell to improve the detection precision. Results show that the limit of detection reaches 0.49 ppm. The detection system responds quickly to changes of gas concentration and is easily to maintenance while has no electromagnetic interference, cross-sensitivity, or carrier gas. In addition, a complete detection process of the system takes only 8 minutes, implying a practical prospect of online monitoring technology.

3.
Sensors (Basel) ; 16(10)2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27782034

ABSTRACT

Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 µL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

4.
Rev Sci Instrum ; 86(10): 106103, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26521000

ABSTRACT

A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 µm could be as high as 0.060 pm/(µl/l), increased by more than 30% in comparison to un-etched FBG.

5.
Food Chem ; 155: 140-5, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24594166

ABSTRACT

In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 µL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier.


Subject(s)
Candida/enzymology , Diglycerides/chemistry , Esters/chemistry , Fatty Acids/chemistry , Fungal Proteins/chemistry , Biocatalysis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Lipase/chemistry , Lipase/genetics , Lipase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...