Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Publication year range
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(10): 1324-1331, 2022 Oct 28.
Article in English, Chinese | MEDLINE | ID: mdl-36411683

ABSTRACT

OBJECTIVES: The liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily, and LXR-ß is an important receptor for cholesterol content in brain cells. LXR-ß/retinoic X receptor (RXR-α)/ATP binding cassette transporter A1 (ABCA1) cholesterol transmembrane transport system is closely related to the occurrence and development of Alzheimer's disease (AD). LXR agonist TO901317 can affect the accumulation of ß- amyloid protein in the brain tissue of APP/PS1 double transgenic AD mice. However, the molecular mechanism is not clarified in detail. This study aims to evaluate the effects of LXR agonist TO901317 on the cognitive function of AD mice fed with high cholesterol diet, and to explore its possible mechanism from the perspective of cholesterol metabolism. METHODS: Twenty four male 6-month-old APP/PS1 double transgenic AD mice were randomly divided into 4 groups, 6 mice in each group: a control group (fed with normal diet), a cholesterol rich diet (CRD) group, a TO901317 group (fed with CRD combined with TO901317), and a GSK2033 group (fed with CRD combined with TO901317 and LXR antagonist GSK2033). The mice were fed with pellet feed made of high cholesterol feed, mixed with lard, egg yolk powder, and cod liver oil twice a day. TO901317 and GSK2033 were dissolved and diluted to a final concentration at 0.03%. The drugs were given to the mice daily through gastric tube according to their body weight. Meanwhile, the mice in the drug group were fed with high cholesterol diet . After feeding for 3 months, Morris water maze was used to observe the changes of spatial exploration and memory ability of AD mice in each group. The contents of TC, LDL, and HDL in serum of mice in each group were detected by cholesterol enzyme colorimetry, and the differences among the groups were compared. The expression of Aß42 in the brain of AD mice was detected by ELISA. Western blotting was used to detect the protein levels of LXR-ß, RXR-α, ABCA1, and Caveolin-1 in the brain of each group. RESULTS: Morris water maze results showed that the times, distance and the duration of mice crossing the platform in the CRD group were significantly decreased compared with the control group (all P<0.05), while these three figures in TO901317 group were significantly increased compared with the CRD group (all P<0.05). Compared with the TO901317 group, there was a decrease of these figures in the GSK2033 group (all P<0.05). The serum TC and LDL levels in the CRD group were significantly higher than those in the control group, while HDL levels were significantly lower (all P<0.001). The figures of the TC and LDL contents level in the TO901317 group were lower than those in the CRD group, while HDL levels were higher (all P<0.001). Compared with TO901317 group, the contents of the TC and LDL in GSK2033 group were significantly increased, while HDL content was significantly decreased (all P<0.001). ELISA results showed that the production of Aß42 peptides in the brain of CRD group was the highest while the content in the TO901317 group was significantly decreased (P<0.001), which was the lowest among the groups. The figure in the control group was close to the GSK2033 group. Western blotting results showed that the protein levels of LXR-ß, RXR-α, and ABCA1 in the CRD group were significantly decreased compared with the control group, but the protein level of Caveolin-1 was increased (all P<0.01). After TO901317 treatment, the protein levels of LXR-ß, RXR-α and ABCA1 were significantly increased, while the protein level of Caveolin-1 was decreased partially (all P<0.001). In the GSK2033 group, the effect of TO901317 on AD mice was partially reversed by GSK2033. Compared to TO901317 group, the protein levels of LXR-ß, RXR-α, and ABCA1 showed a decrease trend, while the protein level of Caveolin-1 showed an increase state (all P<0.05). CONCLUSIONS: High cholesterol diet leads to severer spatial exploration, learning and memory impairment in transgenic AD mice, while the LXR agonist TO901317 attenuates this effect. The mechanism may be that TO901317 promotes cholesterol efflux by activating LXR-ß/RXR-α/ABCA1 transmembrane transport system, reduces the expression of Caveolin-1, improves the composition of lipid raft, and ultimately reduces the production of Aß42 in the brain.


Subject(s)
Alzheimer Disease , Male , Animals , Mice , Liver X Receptors/genetics , Liver X Receptors/agonists , Liver X Receptors/metabolism , Mice, Transgenic , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Caveolin 1/metabolism , Hydrocarbons, Fluorinated/pharmacology , Cognition , Amyloid beta-Peptides/metabolism , Cholesterol
SELECTION OF CITATIONS
SEARCH DETAIL
...