Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 97(4): 1503-1517, 2024.
Article in English | MEDLINE | ID: mdl-38277292

ABSTRACT

The auditory afferent pathway as a clinical marker of Alzheimer's disease (AD) has sparked interest in investigating the relationship between age-related hearing loss (ARHL) and AD. Given the earlier onset of ARHL compared to cognitive impairment caused by AD, there is a growing emphasis on early diagnosis and intervention to postpone or prevent the progression from ARHL to AD. In this context, auditory evoked potentials (AEPs) have emerged as a widely used objective auditory electrophysiological technique for both the clinical diagnosis and animal experimentation in ARHL due to their non-invasive and repeatable nature. This review focuses on the application of AEPs in AD detection and the auditory nerve system corresponding to different latencies of AEPs. Our objective was to establish AEPs as a systematic and non-invasive adjunct method for enhancing the diagnostic accuracy of AD. The success of AEPs in the early detection and prediction of AD in research settings underscores the need for further clinical application and study.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Alzheimer Disease/diagnosis , Evoked Potentials, Auditory/physiology , Auditory Pathways
2.
Front Aging Neurosci ; 14: 857415, 2022.
Article in English | MEDLINE | ID: mdl-35493946

ABSTRACT

Neurons, glial cells and blood vessels are collectively referred to as the neurovascular unit (NVU). In the Alzheimer's disease (AD) brain, the main components of the NVU undergo pathological changes. Transcranial direct current stimulation (tDCS) can protect neurons, induce changes in glial cells, regulate cerebral blood flow, and exert long-term neuroprotection. However, the mechanism by which tDCS improves NVU function is unclear. In this study, we explored the effect of tDCS on the NVU in mice with preclinical AD and the related mechanisms. 10 sessions of tDCS were given to six-month-old male APP/PS1 mice in the preclinical stage. The model group, sham stimulation group, and control group were made up of APP/PS1 mice and C57 mice of the same age. All mice were histologically evaluated two months after receiving tDCS. Protein content was measured using Western blotting and an enzyme-linked immunosorbent assay (ELISA). The link between glial cells and blood vessels was studied using immunofluorescence staining and lectin staining. The results showed that tDCS affected the metabolism of Aß; the levels of Aß, amyloid precursor protein (APP) and BACE1 were significantly reduced, and the levels of ADAM10 were significantly increased in the frontal cortex and hippocampus in the stimulation group. In the stimulation group, tDCS reduced the protein levels of Iba1 and GFAP and increased the protein levels of NeuN, LRP1 and PDGRFß. This suggests that tDCS can improve NVU function in APP/PS1 mice in the preclinical stage. Increased blood vessel density and blood vessel length, decreased IgG extravasation, and increased the protein levels of occludin and coverage of astrocyte foot processes with blood vessels suggested that tDCS had a protective effect on the blood-brain barrier. Furthermore, the increased numbers of Vimentin, S100 expression and blood vessels (lectin-positive) around Aß indicated that the effect of tDCS was mediated by astrocytes and blood vessels. There was no significant difference in these parameters between the model group and the sham stimulation group. In conclusion, our results show that tDCS can improve NVU function in APP/PS1 mice in the preclinical stage, providing further support for the use of tDCS as a treatment for AD.

3.
Neural Regen Res ; 17(10): 2278-2285, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35259850

ABSTRACT

Anodal transcranial direct current stimulation (AtDCS) has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. However, this enhancement was only observed immediately after AtDCS, and the long-term effect of AtDCS remains unknown. In this study, we treated 26-week-old mouse models of Alzheimer's disease in the preclinical stage with 10 AtDCS sessions or sham stimulation. The Morris water maze, novel object recognition task, and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice. Western blotting was used to detect the relevant protein content. Morphological changes were observed using immunohistochemistry and immunofluorescence staining. Six weeks after treatment, the mice subjected to AtDCS sessions had a shorter escape latency, a shorter path length, more platform area crossings, and spent more time in the target quadrant than sham-stimulated mice. The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice. Furthermore, AtDCS reduced the levels of amyloid-ß42 and glial fibrillary acidic protein, a marker of astrocyte activation, and increased the level of neuronal marker NeuN in hippocampal tissue. These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer's disease in the preclinical stage, with improvements that last for at least 6 weeks.

4.
J Alzheimers Dis ; 82(2): 463-484, 2021.
Article in English | MEDLINE | ID: mdl-34057081

ABSTRACT

Alzheimer's disease (AD) is a serious neurodegenerative disease, which seriously affects the behavior, cognition, and memory of patients. Studies have shown that sensory stimulation can effectively improve the cognition and memory of AD patients, and its role in brain plasticity and neural regulation is initially revealed. This paper aims to review the effect of various sensory stimulation and multisensory stimulation for AD, and to explain the possible mechanism, so as to provide some new ideas for further research in this field. We searched the Web of Science and PubMed databases (from 2000 to October 27, 2020) for literature on the treatment of AD with sensory and multisensory stimulation, including music therapy, aromatherapy, rhythmic (e.g., visual or acoustic) stimulation, light therapy, multisensory stimulation, and virtual reality assisted therapy, then conducted a systematic analysis. Results show these sensory and multisensory stimulations can effectively ameliorate the pathology of AD, arouse memory, and improve cognition and behaviors. What's more, it can cause brain nerve oscillation, enhance brain plasticity, and regulate regional cerebral blood flow. Sensory and multisensory stimulation are very promising therapeutic methods, and they play an important role in the improvement and treatment of AD, but their potential mechanism and stimulation parameters need to be explored and improved.


Subject(s)
Acoustic Stimulation , Alzheimer Disease , Mental Processes/physiology , Photic Stimulation/methods , Sensory Receptor Cells/physiology , Acoustic Stimulation/methods , Acoustic Stimulation/psychology , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Alzheimer Disease/therapy , Cerebrovascular Circulation , Humans , Neuronal Plasticity/physiology , Psychophysiology
5.
Front Aging Neurosci ; 13: 619543, 2021.
Article in English | MEDLINE | ID: mdl-33776742

ABSTRACT

Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing ß-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.

6.
Front Aging Neurosci ; 12: 134, 2020.
Article in English | MEDLINE | ID: mdl-32595486

ABSTRACT

Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease. Intervention in the early stage of AD is a new path for AD treatment that is being explored. The behavioral and pathological effects of anodal transcranial direct current stimulation (AtDCS) at the early stage of AD in the mouse model, amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice, were investigated based on our previous studies. Thirty-three 6-month-old male APP/PS1 mice were randomly divided into the model group (AD group), model + sham stimulation group (ADST group) and stimulation group (ADT group). Eleven 6-month-old male C57 wild-type mice were randomly selected as a control group (CTL group). The ADT group received 10 AtDCS sessions. The Morris water maze (MWM) task and novel object recognition (NOR) task were used to test mouse memory. Nissl staining, Western blot (WB), immunohistochemistry and immunofluorescence staining of ß-amyloid (Aß42), glial fibrillary acidic protein (GFAP) and NF200 were conducted for pathological analysis. The ADT group and the CTL group had a shorter escape latency and more platform-region crossings than the AD group and ADST group in the MWM. There was no significant difference in the discrimination index among the groups in the NOR task. Pathological analysis showed visible differences between the AD group and ADT group. This study revealed that early-stage APP/PS1 transgenic mice did not show recognition memory impairment. AtDCS effectively improved spatial learning and memory in the early-stage APP/PS1 transgenic mouse model of AD, alleviating Aß burden and having a protective effect on neurons. AtDCS could improve AD-related symptoms by activating many glial cells to promote the degradation and clearance of Aß or directly affecting production and degradation of Aß to reduce glial activation. AtDCS is an effective means of early intervention in the early stage of AD.

7.
Neurobiol Learn Mem ; 161: 37-45, 2019 05.
Article in English | MEDLINE | ID: mdl-30735789

ABSTRACT

Repetitive anodal transcranial direct current stimulation (tDCS) in a rat model of Alzheimer's disease (AD) has been shown to have distinct neuroprotective effects. Moreover, the effects of anodal tDCS not only occur during the stimulation but also persist after the stimulation has ended (after-effects). Here, the duration of the after-effects induced by repetitive anodal tDCS was investigated based on our previous studies. Adult male Sprague-Dawley rats were divided into three groups: a sham group, a ß-amyloid (Aß) group (AD group) and a stimulation group (ATD group). Aß was injected into the bilateral hippocampi of the rats in the AD and ATD groups to produce the AD model. Rats in the ATD group underwent 10 sessions of anodal tDCS, and the after-effects of repetitive anodal tDCS were evaluated by behavioral and histological analyses. A Morris water maze (MWM) was utilized on a monthly basis to assess spatial learning and memory abilities. The ATD group showed shorter escape latencies and more platform region crossings than the AD group. Hippocampal choline acetyltransferase (ChAT) and glial fibrillary acidic protein (GFAP) immunohistochemical analyses were carried out after the last MWM assessment. The immunohistochemistry results showed notable differences among the groups, particularly between the AD and ATD groups. This study reveals that repetitive anodal tDCS can not only improve cognitive function and memory performance but also has long-term after-effects that persist for 2 months.


Subject(s)
Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Hippocampus/physiopathology , Maze Learning/physiology , Spatial Memory/physiology , Transcranial Direct Current Stimulation , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/pharmacology , Animals , Disease Models, Animal , Hippocampus/drug effects , Male , Rats , Time Factors
8.
Biomaterials ; 25(3): 451-7, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14585693

ABSTRACT

As biodegradable materials, linear polyphosphazenes undergo rapid hydrolysis degradation but exhibit poor mechanical properties. Blending with biodegradable polyesters or inorganic particles strengthen their mechanical properties but give rise to slower degradation rate. To balance the mechanical properties and the degradation rate, micro-crosslinked polyphosphazenes were synthesized in this study. Their glass transition temperatures, mechanical properties, and in vitro degradation behavior were investigated. 2-hydroxyethyl methacrylate (HEMA) was firstly attached to the side chain along with glycine ethyl ester to prepare co-substituted poly(organophosphazene) with pendant ethenyl substituents. The co-substituted poly(organophosphazene) was blended with HEMA or acrylic acid (AA) followed by a free radical polymerization to prepare micro-crosslinked poly(organophosphazenes). The resulting crosslinked polymers showed two separate glass transition temperatures depending on the HEMA or AA feed. Incorporation of crosslinking affected the mechanical properties positively. Crosslinked poly(organophosphazenes) showed an approximately 11-17 fold increase in terms of modulus of elasticity when compared to the linear counterpart. In vitro degradation tests indicated that HEMA-crosslinked polymers hydrolyzed at a retarded rate while AA-crosslinked polymers hydrolyzed at a moderate rate compared to linear polymers.


Subject(s)
Biocompatible Materials/chemistry , Cross-Linking Reagents/pharmacology , Glycine/analogs & derivatives , Organophosphorus Compounds/pharmacology , Polymers/pharmacology , Chromatography , Free Radicals , Glass , Hydrolysis , Materials Testing , Methacrylates/chemistry , Models, Chemical , Polyesters/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...