Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Rev E ; 107(2-1): 024419, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932519

ABSTRACT

The mechanical properties of a thin, planar material, perfused by an embedded flow network, have been suggested to be potentially changeable locally and globally by fluid transport and storage, which can result in both small- and large-scale deformations such as out-of-plane buckling. In these processes, fluid absorption and storage eventually cause the material to locally swell. Different parts can hydrate and swell unevenly, prompting a differential expansion of the surface. In order to computationally study the hydraulically induced differential swelling and buckling of such a membrane, we develop a network model that describes both the membrane shape and fluid movement, coupling mechanics with hydrodynamics. We simulate the time-dependent fluid distribution in the flow network based on a spatially explicit resistor network model with local fluid-storage capacitance. The shape of the surface is modeled by a spring network produced by a tethered mesh discretization, in which local bond rest lengths are adjusted instantaneously according to associated local fluid content in the capacitors in a quasistatic way. We investigate the effects of various designs of the flow network, including overall hydraulic traits (resistance and capacitance) and hierarchical architecture (arrangement of major and minor veins), on the specific dynamics of membrane shape transformation. To quantify these effects, we explore the correlation between local Gaussian curvature and relative stored fluid content in each hierarchy by using linear regression, which reveals that stronger correlations could be induced by less densely connected major veins. This flow-controlled mechanism of shape transformation was inspired by the blooming of flowers through the unfolding of petals. It can potentially offer insights for other reversible motions observed in plants induced by differential turgor and water transport through the xylem vessels, as well as engineering applications.

2.
Front Plant Sci ; 12: 725995, 2021.
Article in English | MEDLINE | ID: mdl-34721457

ABSTRACT

Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.

3.
J Chem Phys ; 153(14): 144901, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33086800

ABSTRACT

We investigate the behavior of two-dimensional systems that exhibit a transition between homogeneous and spatially inhomogeneous phases, which have spherical topology, and whose mechanical properties depend on the local value of the order parameter. One example of such a system is multicomponent lipid bilayer vesicles, which serve as a model to study cellular membranes. Under certain conditions, such bilayers separate into coexisting liquid-ordered and liquid-disordered regions. When arranged into the shape of small vesicles, this phase coexistence can result in spatial patterns that are more complex than the basic two-domain configuration encountered in typical bulk systems. The difference in bending rigidity between the liquid-ordered and liquid-disordered regions couples the shape of the vesicle to the local composition. We show that this interplay gives rise to a rich phase diagram that includes homogeneous, separated, and axisymmetric modulated phases that are divided by regions of spiral patterns in the surface morphology.


Subject(s)
Liposomes/chemistry , Lipid Bilayers/chemistry , Models, Chemical , Phase Transition , Surface Properties
4.
J Chem Phys ; 149(17): 174901, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30408985

ABSTRACT

We study the phase behavior of multicomponent lipid bilayer vesicles that can exhibit intriguing morphological patterns and lateral phase separation. We use a modified Landau-Ginzburg model capable of describing spatially uniform phases, microemulsions, and modulated phases on a spherical surface. We calculate its phase diagram for multiple vesicle sizes using analytical and numerical techniques as well as Monte Carlo simulations. Consistent with previous studies on planar systems, we find that thermal fluctuations move phase boundaries, stabilizing phases of higher disorder. We also show that the phase diagram is sensitive to the size of the system at small vesicle radii. Such finite size effects are likely relevant in experiments on small, unilamellar vesicles and should be considered in their comparison to theoretical and simulation results.

5.
Soft Matter ; 14(27): 5686-5692, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29947410

ABSTRACT

Scattering structure factors provide essential insight into material properties and are routinely obtained in experiments, computer simulations, and theoretical analyses. Different approaches favor different geometries of the material. In case of lipid bilayers, scattering experiments can be performed on spherical vesicles, while simulations and theory often consider planar membrane patches. We derive an approximate relationship between the structure functions of such a material in planar and spherical geometries. We illustrate the usefulness of this relationship in a case study of a Gaussian material that supports both homogeneous and microemulsion phases. Within its range of applicability, this relationship enables a model-free comparison of structure factors of the same material in different geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...