Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(56): e202302061, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37463871

ABSTRACT

A highly enantioselective cyanation of imines (up to >99 % ee) has been developed using well-designed C2 -symmetric hydrogen bonding catalysts. The catalytic strategy was characterized with low catalyst loading (0.1-1 mol %), easily accessible catalysts with diverse functional groups, and catalytic base additives. A wide range of imines, including the challenging N-Boc and N-Cbz protected ketimines and aldimines, as well as fluoroalkylated ketimines, were investigated under mild conditions to afford the products with good to excellent yields (up to 99 % yield) and high enantioselectivity (up to >99 % ee). Control experiments revealed that the multiple hydrogen bonding catalysts enhanced the reactivity and enantioselectivity of the Strecker reaction initiated by the base.

2.
Chem Commun (Camb) ; 56(10): 1581-1584, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-31934692

ABSTRACT

An enantioselective Strecker reaction to construct trifluoromethylated quaternary stereocenters with N-PMP and unexplored N-Boc trifluoromethyl ketimines catalyzed using an organophosphine dual-reagent catalyst has been developed. The enantioselectivities of the corresponding products with the same catalyst could be switched by using different N-protecting groups (N-PMP or N-Boc). The trifluoromethyl amino nitriles were obtained in high yield and high enantioselectivity in a short time and could be easily converted to a variety of useful trifluoromethyl-containing compounds.

3.
Anal Chim Acta ; 1065: 134-141, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31005146

ABSTRACT

A novel ratiometric and reversible chemosensor 4-((2-(Benzo[d]thiazol-2-yl)phenyl)ethynyl)-N,N-diethylaniline (BT-1) based on ortho-arylethynyl benzothiazole with large Stokes shift (Δλ≈190 nm) was designed and synthesized to recognize Cu2+. Copper ion induces a remarkable fluorescence enhancement and causes formation of a BT-1-Cu complex. The clamp-on coordination mode of BT-1 to Cu2+ was demonstrated using Job's plot, mass spectrum (MS) and DFT calculations. The calculations also indicate that Cu2+ was chelated to BT-1 through N and alkyne instead of S and alkyne. The probe could quantify Cu2+ with the detection limit of 3.2 × 10-9 M. The in vitro imaging results indicated that the probe BT-1 was membrane-permeable and could be applied into the recognition of Cu2+ ions in living cells.


Subject(s)
Copper/analysis , Fluorescent Dyes/chemistry , Density Functional Theory , Fluorescence , Fluorescent Dyes/chemical synthesis , Hep G2 Cells , Humans , Mass Spectrometry , Optical Imaging , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...