Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932030

ABSTRACT

Zinc-ion batteries are promising candidates for large-scale energy storage. The side reactions of the hydrogen evolution reaction (HER) and zinc dendrite growth are major challenges for developing high-performance zinc-ion batteries. In this paper, a supramolecular gel electrolyte (BLO-ILZE) was self-assembled in an ionic liquid (EMIMBF4) with zinc tetrafluoroborate (Zn(BF4)2) on the separator in situ to obtain a gel electrolyte used in zinc-ion batteries. BLO-ILZE is demonstrated to significantly enhance conductivity over a broad temperature range between -70 and 100 °C. Interestingly, through testing and fitting, it is found that the supramolecular gel electrolyte satisfies the liquid state law over a wide temperature range, and even achieves high conductivity (2.12 mS cm-1) at -40 °C. It is equivalent to the conductivity of aqueous zinc-ion batteries (ZnSO4/H2O) at -10 °C, which is 2.33 mS cm-1. Moreover, the supramolecular gel electrolyte can effectively inhibit the HER, thus exhibiting a longer lifetime in Zn/Zn cells for 3470 h at 1 mA cm-2 compared to the aqueous zinc-ion batteries with the Zn(BF4)2 aqueous electrolyte (400 h at 1 mA cm-2). The assembled V2O5/BLO-ILZE/Zn full cells also showed cycling performance, with 5000 cycles at 0.5 mA g-1 at room temperature, a capacity of 98%, and a coulombic efficiency of about 100%.

2.
RSC Adv ; 14(22): 15337-15346, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38741973

ABSTRACT

Zinc-ion batteries are promising candidates for large-scale energy storage, and gel polymer electrolytes (GPEs) play an important role in zinc-ion battery applications. Metal-organic frameworks (MOFs) are characterized by large specific surface areas and ordered pores. This highly ordered microporous structure provides a continuous transport channel for ions, thus realizing the high-speed transmission of ions. In this paper, an MOF-modified dendrite-free GPE was designed. The incorporation of MOF particles not only reduces the crystallinity of the polymer, increases the motility of the molecular chains, and facilitates the transfer of Zn2+, but also attracts anions to reduce polarization during electrochemical reactions. It was shown that this MOF-modified gel polymer electrolyte has a higher ionic conductivity compared to other PVDF-based polymer electrolytes (approximate range of 2 × 10-4 to 3 × 10-3 S cm-1), with a very high conductivity (1.63 mS cm-1) even at -20 °C. The Zn/Zn symmetric cell could maintain operation for more than 3600 h at a current density of 1 mA cm-2, and SEM showed that the MOF-modified gel electrolyte had uniform Zn2+ deposition.

SELECTION OF CITATIONS
SEARCH DETAIL
...