Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 821
Filter
1.
J Hazard Mater ; 474: 134787, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823101

ABSTRACT

The developmental toxicity effects of neonicotinoid pesticides such as clothianidin have not been fully explored in agricultural applications. This is particularly noteworthy because such pesticides significantly impact the survival rates of invertebrates, with arthropod larvae being particularly vulnerable. This study aimed to address this research gap by specifically investigating the toxicological effects of clothianidin on the developmental stages of the larvae of the economically important aquaculture species Penaeus vannamei. In these experiments, shrimp eggs were exposed to seawater containing different concentrations of clothianidin beginning at N1, and each phase was observed and analyzed to determine its toxic impact on larval development. These results revealed that clothianidin induces an increase in deformity rates and triggers abnormal cell apoptosis. It also significantly reduced survival rates and markedly decreased body length and heart rate in the later stages of larval development (P3). Transcriptomic analysis revealed disruptions in larval DNA integrity, protein synthesis, and signal transduction caused by clothianidin. To survive prolonged exposure, larvae may attempt to maintain their viability by repairing cell structures and enhancing signal transduction mechanisms. This study offers the first empirical evidence of the toxicity of clothianidin to arthropod larvae, underscoring the impact of environmental pollution on aquatic health.

2.
Front Neurol ; 15: 1393022, 2024.
Article in English | MEDLINE | ID: mdl-38846044

ABSTRACT

Purpose: The prevalence of comorbid pain and Bipolar Disorder in clinical practice continues to be high, with an increasing number of related publications. However, no study has used bibliometric methods to analyze the research progress and knowledge structure in this field. Our research is dedicated to systematically exploring the global trends and focal points in scientific research on pain comorbidity with bipolar disorder from 2003 to 2023, with the goal of contributing to the field. Methods: Relevant publications in this field were retrieved from the Web of Science core collection database (WOSSCC). And we used VOSviewer, CiteSpace, and the R package "Bibliometrix" for bibliometric analysis. Results: A total of 485 publications (including 360 articles and 125 reviews) from 66 countries, 1019 institutions, were included in this study. Univ Toront and Kings Coll London are the leading research institutions in this field. J Affect Disorders contributed the largest number of articles, and is the most co-cited journal. Of the 2,537 scholars who participated in the study, Stubbs B, Vancampfort D, and Abdin E had the largest number of articles. Stubbs B is the most co-cited author. "chronic pain," "neuropathic pain," "psychological pain" are the keywords in the research. Conclusion: This is the first bibliometric analysis of pain-related bipolar disorder. There is growing interest in the area of pain and comorbid bipolar disorder. Focusing on different types of pain in bipolar disorder and emphasizing pain management in bipolar disorder are research hotspots and future trends. The study of pain related bipolar disorder still has significant potential for development, and we look forward to more high-quality research in the future.

3.
Front Med (Lausanne) ; 11: 1409534, 2024.
Article in English | MEDLINE | ID: mdl-38841589

ABSTRACT

Purpose: Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods: Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results: A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion: This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.

4.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195041, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740364

ABSTRACT

The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.

5.
Microb Pathog ; 192: 106683, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735447

ABSTRACT

Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.

6.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812197

ABSTRACT

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Surface Plasmon Resonance , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Quality Control , Humans , Liquid Chromatography-Mass Spectrometry
7.
Int Immunopharmacol ; 134: 112253, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38735257

ABSTRACT

Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.


Subject(s)
Myeloid Cells , Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/pathology , Myeloid Cells/immunology , Animals
8.
J Cancer Res Clin Oncol ; 150(5): 268, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772976

ABSTRACT

PURPOSE: Papillary thyroid carcinoma (PTC) with metastatic lymph nodes (LNs) is closely associated with disease recurrence. This study accessed the value of superb microvascular imaging (SMI) in the diagnosis and prediction of metastatic cervical LNs in patients with PTC. METHODS: A total of 183 cervical LNs (103 metastatic and 80 reactive) from 116 patients with PTC were analysed. Metastatic cervical LNs were confirmed by pathology or/and cytology; reactive cervical LNs were confirmed by pathology or clinical features. The characteristic of conventional ultrasound (US) was extracted using univariate and multivariate analyses. The diagnostic performance of US and SMI were compared using the area under the receiver operating curve (AUC) with corresponding sensitivity and specificity. A nomogram was developed to predict metastatic LNs in patients with PTC, based on multivariate analyses. RESULTS: L/S < 2, ill-defined border, absence of hilum, isoechoic or hyperechoic, heterogeneous internal echo, peripheral or mixed vascular pattern on color Doppler flow imaging (CDFI) and SMI, and a larger SMI vascular index appeared more frequently in metastatic LNs in the training datasets than in reactive LNs (P < 0.05). The diagnostic sensitivity, specificity and accuracy of SMI vs US are 94.4% and 87.3%, 79.3% and 69.3%, and 87.6% and 79.1%, respectively; SMI combined with US exhibited a higher AUC [0.926 (0.877-0.975)] than US only [0.829 (0.759-0.900)]. L/S < 2, peripheral or mixed vascular type on CDFI, and peripheral or mixed vascular types on SMI were independent predictors of metastatic LNs with PTC. The nomogram based on these three parameters exhibited excellent discrimination, with an AUC of 0.926. CONCLUSION: SMI was superior to US in diagnosing metastatic LNs in PTC. US combined with SMI significantly improved the diagnostic accuracy of metastatic cervical LNs with PTC. SMI is efficacious for differentiating and predicting metastatic cervical LNs.


Subject(s)
Lymph Nodes , Lymphatic Metastasis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Female , Lymphatic Metastasis/diagnostic imaging , Male , Middle Aged , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Microvessels/diagnostic imaging , Microvessels/pathology , Aged , Young Adult , Neck/diagnostic imaging , Nomograms , Adolescent , Carcinoma, Papillary/diagnostic imaging , Carcinoma, Papillary/pathology , Carcinoma, Papillary/secondary , Retrospective Studies , ROC Curve , Ultrasonography/methods , Sensitivity and Specificity , Ultrasonography, Doppler, Color/methods
9.
One Health ; 18: 100735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711479

ABSTRACT

Background: Borrelia miyamotoi is a spirochete species transmitted via hard ticks. Following its discovery in Japan, this pathogen has been detected around the world, and is increasingly confirmed as a human pathogen causing febrile disease, namely relapsing fever. Its presence has been confirmed in the Northeast China. However, there is little information regarding the presence of B. miyamotoi and other hard-tick-borne relapsing fever spirochetes in southern China including Yunnan province, where tick and animal species are abundant and many people both inhabit and visit for recreation. Methods: For the present study, we collected samples of ticks, wildlife, and domestic animal hosts from different counties in Yunnan province. Nucleic acids from samples were extracted, and the presence of B. miyamotoi and other relapsing fever spirochetes was confirmed using polymerase chain reaction (PCR) for the 16S rRNA specific target gene fragment. The positive samples were then amplified for partial genome of the flaB and glpQ genes. Statistical differences in its distribution were analyzed by SPSS 20 software. Sequence of partial 16S rRNA, flaB and glpQ genome were analyzed and phylogenetic trees were constructed. Results: A total of 8260 samples including 2304 ticks, 4120 small mammals and 1836 blood of domestic animal hosts were collected for screening for infection of B. miyamotoi and other relapsing fever spirochetes. Cattle and sheep act as the main hosts and Rhipicephalus microplus, Haemaphysalis nepalensis, H. kolonini and Ixodes ovatus were identified as the important vector host with high prevalence or wide distribution. Only one Mus caroli (mouse) and one Sorex alpinus (shrew) were confirmed positive for relapsing fever spirochetes. Evidence of vertical transmission in ticks was also confirmed. Two known strains of B. miyamotoi and one novel relapsing fever spirochetes, B. theileri-like agent, were confirmed and described with their host adaptation, mutation, and potential risk of spreading and spillover for human beings. Conclusions: Our results provide new evidence of relapsing fever spirochetes in vector and animal hosts in Yunnan province based on large sample sizes, and offer guidance on further investigation, surveillance and monitoring of this pathogen.

10.
BMC Cardiovasc Disord ; 24(1): 202, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589776

ABSTRACT

BACKGROUND: The latest evidence indicates that ATP-binding cassette superfamily G member 2 (ABCG2) is critical in regulating lipid metabolism and mediating statin or cholesterol efflux. This study investigates whether the function variant loss within ABCG2 (rs2231142) impacts lipid levels and statin efficiency. METHODS: PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until November 18, 2023. RESULTS: Fifteen studies (34,150 individuals) were included in the analysis. The A allele [Glu141Lys amino acid substitution was formed by a transversion from cytosine (C) to adenine (A)] of rs2231142 was linked to lower levels of high-density lipoprotein cholesterol (HDL-C), and higher levels of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). In addition, the A allele of rs2231142 substantially increased the lipid-lowering efficiency of rosuvastatin in Asian individuals with dyslipidemia. Subgroup analysis indicated that the impacts of rs2231142 on lipid levels and statin response were primarily in Asian individuals. CONCLUSIONS: The ABCG2 rs2231142 loss of function variant significantly impacts lipid levels and statin efficiency. Preventive use of rosuvastatin may prevent the onset of coronary artery disease (CAD) in Asian individuals with dyslipidemia.


Subject(s)
Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Rosuvastatin Calcium , Genetic Predisposition to Disease , Cholesterol, LDL/metabolism , Dyslipidemias/diagnosis , Dyslipidemias/drug therapy , Dyslipidemias/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
11.
Adv Sci (Weinh) ; : e2310295, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626370

ABSTRACT

Neuropathic pain can occur during the prediabetic stage, even in the absence of hyperglycemia. The presence of prediabetic neuropathic pain (PDNP) poses challenges to the management of individuals with prediabetes. However, the mechanisms underlying this pain remain unclear. This study aims to investigate the underlying mechanism and identify potential therapeutic targets of PDNP. A prediabetic animal model induced by a high-energy diet exhibits both mechanical allodynia and thermal hyperalgesia. Furthermore, hyperexcitability and decreased potassium currents are observed in the dorsal root ganglion (DRG) neurons of these rats. TREK1 and TREK2 channels, which belong to the two-pore-domain K+ channel (K2P) family and play an important role in controlling cellular excitability, are downregulated in DRG neurons. Moreover, this alteration is modulated by Sortilin, a molecular partner that modulates the expression of TREK1. The overexpression of Sortilin negatively affects the expression of TREK1 and TREK2, leading to increased neuronal excitability in the DRG and enhanced peripheral pain sensitivity in rats. Moreover, the downregulation of Sortilin or activation of TREK1 and TREK2 channels by genetic or pharmacological approaches can alleviate PDNP. Therefore, targeting the Sortilin-mediated TREK1/2 pathway may provide a therapeutic approach for ameliorating PDNP.

12.
Opt Express ; 32(6): 10059-10067, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571226

ABSTRACT

Dissipative solitons (DSs), due to the complex interplay among dispersion, nonlinear, gain and loss, illustrate abundant nonlinear dynamics behaviors. Especially, dispersion plays an important role in the research of DS dynamics in ultrafast fiber lasers. Previous studies have mainly focused on the effect of even-order dispersion, i.e., group velocity dispersion (GVD) and fourth-order dispersion. In fact, odd-order dispersions, such as third-order dispersion (TOD), also significantly influences the dynamics of DSs. However, due to the lack of dispersion engineering tools, few experimental researches in this domain have been reported. In this work, by employing a pulse shaper in ultrafast fiber laser, an in-depth exploration of the DS dynamics influenced by TOD was conducted. With the increase of TOD value, the stable single DS undergoes a splitting into two solitons and then enters explosion state, and ultimately evolves into a chaotic state. The laser operation state is correlated to dispersion profile, which could be controlled by TOD. Here, the positive dispersion at long-wavelength side will be gradually shifted to negative dispersion by increasing the TOD, where soliton effect will drive the transitions. These findings offer valuable insights into the nonlinear dynamics of ultrafast lasers and may also foster applications involving higher-order dispersion.

13.
J Nutr ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641205

ABSTRACT

BACKGROUND: The mitochondria-associated endoplasmic reticulum membrane (MAM) is the central hub for endoplasmic reticulum and mitochondria functional communication. It plays a crucial role in hepatic lipid homeostasis. However, even though MAM has been acknowledged to be rich in enzymes that contribute to lipid biosynthesis, no study has yet investigated the exact role of MAM on hepatic neutral lipid synthesis. OBJECTIVES: To address these gaps, this study investigated the systemic control mechanisms of MAM on neutral lipids synthesis by recruiting seipin, focusing on the role of the inositol trisphosphate receptor-1,4,5(Ip3r)-75 kDa glucose-regulated protein (Grp75)-voltage-dependent anion channel (Vdac) complex and their relevant Ca2+ signaling in this process. METHODS: To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco), were fed 6 different diets containing a range of palmitic acid (PA) concentrations from 0-150 g/kg in vivo for 10 wk. In vitro, experiments were also conducted to intercept the MAM-mediated Ca2+ signaling in isolated hepatocytes by transfecting them with si-mitochondrial calcium uniporter (mcu). Because mcu was placed in the inner mitochondrial membrane (IMM), si-mcu cannot disrupt MAM's structural integrity. RESULTS: 1. Hepatocellular MAM subproteome analysis indicated excessive dietary PA intake enhanced hepatic MAM structure joined by activating Ip3r-Grp75-Vdac complexes. 2. Dietary PA intake induced hepatic neutral lipid accumulation through MAM recruiting Seipin, which activated lipid droplet biogenesis. Our findings also revealed a previously unidentified mechanism whereby MAM-recruited seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling and not only MAM's structural integrity. CONCLUSIONS: These results offer a novel insight into the MAM-recruited seipin in controlling hepatic lipid synthesis in a MAM structural integrity-dependent and Ca2+ signaling-dependent manner, highlighting the critical contribution of MAM in maintaining hepatic neutral lipid homeostasis.

14.
J Cell Mol Med ; 28(8): e18311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634217

ABSTRACT

Interleukin-6 (IL-6), a pivotal pro-inflammatory cytokine, is closely linked to vascular wall thickening and atherosclerotic lesion. Since serum IL-6 levels are largely determined by the genetic variant in IL-6, this study was conducted to investigate whether the IL-6 variant impacts cardiometabolic profile and the risk of premature coronary artery disease (PCAD). PubMed, Cochrane Library, Central, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and ClinicalTrials.gov were searched from May 13, 2022 to June 28, 2023. In total, 40 studies (26,543 individuals) were included for the analysis. The rs1800795 (a function variant in the IL-6 gene) C allele was linked to higher levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), fasting plasma glucose (FPG), body mass index (BMI), and waist circumference (WC), and a lower levels of high-density lipoprotein cholesterol (HDL-C). However, no significant association was observed of rs1800795 with triglycerides (TG), systolic blood pressure (SBP), and diastolic blood pressure (DBP). Interestingly, a significant association was detected between rs1800795 and PCAD. Subgroup analyses indicted that the impacts of rs1800795 on cardiometabolic risk factors were significant in Caucasians but stronger in obese patients. In contrast, the impact of rs1800795 on PCAD was significant in brown race population. In summary, rs1800795 had a slight but significant impact on cardiometabolic risk factors and PCAD. IL-6 inhibition with ziltivekimab or canakinumab may benefit high-risk populations (e.g. brown race population, Caucasians, obese patients, etc.) with rs1800795 to prevent PCAD.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Humans , Cardiovascular Diseases/etiology , Cholesterol, HDL , Coronary Artery Disease/genetics , Cytokines/genetics , Interleukin-6 , Obesity/complications , Risk Factors , Triglycerides
15.
Chemosphere ; 358: 142150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679174

ABSTRACT

Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.


Subject(s)
Penaeidae , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Penaeidae/drug effects , Oxidative Stress/drug effects , Neonicotinoids/toxicity , Pyridines/toxicity , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Insecticides/toxicity , Heterocyclic Compounds, 3-Ring
16.
Proc Natl Acad Sci U S A ; 121(14): e2319288121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527206

ABSTRACT

Design tactics and mechanistic studies both remain as fundamental challenges during the exploitations of earth-abundant molecular electrocatalysts for CO2 reduction, especially for the rarely studied Cr-based ones. Herein, a quaterpyridyl CrIII catalyst is found to be highly active for CO2 electroreduction to CO with 99.8% Faradaic efficiency in DMF/phenol medium. A nearly one order of magnitude higher turnover frequency (86.6 s-1) over the documented Cr-based catalysts (<10 s-1) can be achieved at an applied overpotential of only 190 mV which is generally 300 mV lower than these precedents. Such a high performance at this low driving force originates from the metal-ligand cooperativity that stabilizes the low-valent intermediates and serves as an efficient electron reservoir. Moreover, a synergy of electrochemistry, spectroelectrochemistry, electron paramagnetic resonance, and quantum chemical calculations allows to characterize the key CrII, CrI, Cr0, and CO-bound Cr0 intermediates as well as to verify the catalytic mechanism.

17.
J Hazard Mater ; 469: 133930, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452673

ABSTRACT

Dinotefuran, a neonicotinoid insecticide, may impact nontarget organisms such as Decapoda P. vannamei shrimp with nervous systems similar to insects. Exposing shrimp to low dinotefuran concentrations (6, 60, and 600 µg/L) for 21 days affected growth, hepatosomatic index, and survival. Biomarkers erythromycin-N-demethylase, alanine aminotransferase, and catalase increased in all exposed groups, while glutathione S-transferase is the opposite; aminopyrin-N-demethylase, malondialdehyde, and aspartate aminotransferase increased at 60 and 600 µg/L. Concentration-dependent effects on gut microbiota altered the abundance of bacterial groups, increased potentially pathogenic and oxidative stress-resistant phenotypes, and decreased biofilm formation. Gram-positive/negative microbiota changed significantly. Metabolite differences between the exposed and control groups were identified using mass spectrometry and KEGG pathway enrichment. N-acetylcystathionine showed potential as a reliable dinotefuran metabolic marker. Weighted correlation network analysis (WGCNA) results indicated high connectivity of cruecdysone in the metabolite network and significant enrichment at 600 µg/L dinotefuran. The WGCNA results revealed a highly significant negative correlation between two key metabolites, caldine and indican, and the gut microbiota within co-expression modules. Overall, the risk of dinotefuran exposure to non-target organisms in aquatic environments still requires further attention.


Subject(s)
Gastrointestinal Microbiome , Guanidines , Nitro Compounds , Penaeidae , Animals , Penaeidae/genetics , Penaeidae/metabolism , Penaeidae/microbiology , Neonicotinoids/toxicity , Neonicotinoids/metabolism , Oxidoreductases, N-Demethylating/metabolism , Oxidoreductases, N-Demethylating/pharmacology
18.
ACS Appl Mater Interfaces ; 16(13): 16724-16731, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38508864

ABSTRACT

Traditional metal materials used in electronic devices are often problematic due to issues like bending resistance, oxidation leading to failure, and environmental pollution. To address these challenges, microwave electronic devices are constantly casting around for metal substitute materials with additional characteristics such as flexibility, anticorrosive, and eco-friendly. However, finding suitable materials that are accessible for radiofrequency (RF) applications is a difficult yet promising task. Consequently, a high-performance metasurface antenna based on highly conductive graphene films for satellite communications is developed in this paper. The proposed graphene assembled films (GAFs) have a conductivity of up to 1.13 × 106 S/m. Simulation and measurement results confirm the excellent performance of the designed antenna. Comparative experiments are also conducted on salt spray and mechanical bending between GAF antenna patterns and copper foil counterparts, further demonstrating the outstanding flexible property and corrosion resistance performance of prepared GAFs.

19.
Front Pharmacol ; 15: 1295356, 2024.
Article in English | MEDLINE | ID: mdl-38515837

ABSTRACT

Hyperglycemia in pregnancy can increase the risk of congenital disorders, but little is known about craniofacial skeleton malformation and its corresponding medication. Our study first used meta-analysis to review the previous findings. Second, baicalin, an antioxidant, was chosen to counteract high glucose-induced craniofacial skeleton malformation. Its effectiveness was then tested by exposing chicken embryos to a combination of high glucose (HG, 50 mM) and 6 µM baicalin. Third, whole-mount immunofluorescence staining and in situ hybridization revealed that baicalin administration could reverse HG-inhibited neural crest cells (NCC) delamination and migration through upregulating the expression of Pax7 and Foxd3, and mitigate the disordered epithelial-mesenchymal transition (EMT) process by regulating corresponding adhesion molecules and transcription factors (i.e., E-cadherin, N-cadherin, Cadherin 6B, Slug and Msx1). Finally, through bioinformatic analysis and cellular thermal shift assay, we identified the AKR1B1 gene as a potential target. In summary, these findings suggest that baicalin could be used as a therapeutic agent for high glucose-induced craniofacial skeleton malformation.

20.
Adv Sci (Weinh) ; 11(18): e2308809, 2024 May.
Article in English | MEDLINE | ID: mdl-38450888

ABSTRACT

Conventional venipuncture is invasive and challenging in low and middle-income countries. Conversely, point-of-care devices paired with fingersticks, although less invasive, suffer from high variability and low blood volume collection. Recently approved microsampling devices address some of these issues but remain cost-prohibitive for resource-limited settings. In this work, a cost-effective microsampling device is described for the collection of liquid blood with minimal invasiveness and sufficient volume retrieval for laboratory analyses or immediate point-of-care testing. Inspired by the anatomy of sanguivorous leeches, the single-use device features a storage compartment for blood collection and a microneedle patch hidden within a suction cup. Finite Element Method simulations, corroborated by mechanical analyses, guide the material selection for device fabrication and design optimization. In piglets, the device successfully collects ≈195 µL of blood with minimal invasiveness. Additionally, a tailor-made lid and adapter enable safe fluid transportation and integration with commercially available point-of-care systems for on-site analyses, respectively. Taken together, the proposed platform holds significant promise for enhancing healthcare in the pediatric population by improving patient compliance and reducing the risk of needlestick injuries through concealed microneedles. Most importantly, given its cost-effective fabrication, the open-source microsampling device may have a meaningful impact in resource-limited healthcare settings.


Subject(s)
Blood Specimen Collection , Cost-Benefit Analysis , Equipment Design , Animals , Swine , Equipment Design/methods , Blood Specimen Collection/instrumentation , Blood Specimen Collection/methods , Blood Specimen Collection/economics , Point-of-Care Systems , Humans , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...