Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812197

ABSTRACT

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Surface Plasmon Resonance , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Quality Control , Humans , Liquid Chromatography-Mass Spectrometry
2.
Chin J Integr Med ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35947230

ABSTRACT

OBJECTIVE: To investigate the effects of Pien Tze Huang (PZH) on the migration and invasion of HCC cells and underlying molecular mechanism. METHODS: Cell counting kit-8 (CCK-8) was applied to evaluate the cell viabilities of SMMC-7721, SK-Hep-1, C3A and HL-7702 (6 × 103 cells/well) co-incubated with different concentrations of PZH (0, 0.2, 0.4, 0.6, 0.8 mg/mL) for 24 h. Transwell, wound healing assay, CCK-8 and Annexin V-FITC/PI staining were conducted to investigate the effects of PZH on the migration, invasion, proliferation and apoptosis of SK-Hep-1 and SMMC-7721 cells (650 µ g/mL for SK-Hep-1 cells and 330 µ g/mL for SMMC-7721 cells), respectively. In vivo, lung metastasis mouse model constructed by tail vein injection of HCC cells was used for evaluating the anti-metastasis function of PZH. SK-Hep-1 cells (106 cells/200 µ L per mice) were injected into B-NDG mice via tail vein. Totally 8 mice were randomly divided into PZH and control groups, 4 mice in each group. After 2-d inoculation, mice in the PZH group were administered with PZH (250 mg/kg, daily) and mice in the control group received only vehicle (PBS) from the 2nd day after xenograft to day 17. Transcriptome analysis based on RNA-seq was subsequently used for deciphering anti-tumor mechanism of PZH. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to verify RNA-seq results. Luciferase reporter assay was performed to examine the transcriptional activity of yes-associated protein (YAP). RESULTS: PZH treatment significantly inhibited the migration, invasion, proliferation and promoted the apoptosis of HCC cells in vitro and in vivo (P<0.01). Transcriptome analysis indicated that Hippo signaling pathway was associated with anti-metastasis function of PZH. Mechanical study showed PZH significantly inhibited the expressions of platelet derived growth factor receptor beta (PDGFRB), YAP, connective tissue growth factor (CCN2), N-cadherin, vimentin and matrix metallopeptidase 2 (MMP2, P<0.01). Meanwhile, the phosphorylation of YAP was also enhanced by PZH treatment in vitro and in vivo. Furthermore, PZH played roles in inhibiting the transcriptional activity of YAP. CONCLUSION: PZH restrained migration, invasion and epithelial-mesenchymal transition of HCC cells through repressing PDGFRB/YAP/CCN2 axis.

3.
Neural Regen Res ; 17(2): 433-439, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34269220

ABSTRACT

MicroRNAs (miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. MicroRNA-29b (miR-29b) plays a broad and critical role in brain homeostasis. In this study, we tested the function of miR-29b in animal and cell models by inhibiting miR-29b expression. Mouse models of middle cerebral artery occlusion were established using the modified Zea-Longa suture method. Prior to modeling, 50 nmol/kg miR-29b antagomir was injected via the tail vein. MiR-29b expression was found to be abnormally increased in ischemic brain tissue. The inhibition of miR-29b expression decreased the neurological function score and reduced the cerebral infarction volume and cell apoptosis. In addition, the inhibition of miR-29b significantly decreased the malondialdehyde level, increased superoxide dismutase activity, and Bcl-2 expression, and inhibited Bax and Caspase3 expression. PC12 cells were treated with glutamate for 12 hours to establish in vitro cell models of ischemic stroke and then treated with the miR-29 antagomir for 48 hours. The results revealed that miR-29b inhibition in PC12 cells increased Bcl-2 expression and inhibited cell apoptosis and oxidative damage. These findings suggest that the inhibition of miR-29b inhibits oxidative stress and cell apoptosis in ischemic stroke, producing therapeutic effects in ischemic stroke. This study was approved by the Laboratory Animal Care and Use Committee of the First Affiliated Hospital of Zhengzhou University (approval No. 201709276S) on September 27, 2017.

4.
Chin Med J (Engl) ; 124(15): 2248-53, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21933552

ABSTRACT

BACKGROUND: The interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK1) is believed to play an important role in the pathogenesis of sepsis. Recent studies have suggested that the IRAK1 functional genetic variant could affect the severity of sepsis in Caucasians. In this report, we have investigated whether polymorphisms at the IRAK1 gene are associated with the susceptibility to and severity of sepsis among the Chinese population. METHODS: Haplotype-tagging single nucleotide polymorphisms (htSNPs) were selected from the HapMap database. They were genotyped in 255 patients with sepsis and 260 control subjects by PCR/restriction fragment length polymorphism (RFLP) analysis. The association between the selected htSNPs and the susceptibility to and severity of sepsis were estimated by Logistic regression with adjustments for age, sex, smoking, drinking, chronic disease status, Acute Physiology and Chronic Health Evaluation (APACHE) II score and primary diseases. RESULTS: rs1059702 was selected to represent the six linked htSNPs for IRAK1. Genotype frequencies of the htSNPs were in Hardy-Weinberg equilibrium for females, as were allele frequencies for both sex groups. Associations were observed in females between the htSNPs C/C genotype and increased susceptibility to sepsis (odds ratio (OR), 5.46; 95% confidence interval (CI), 1.12 - 26.67; P = 0.018), and such associations were also observed between the IRAK1 variant haplotype (CC/C-allele) and increased susceptibility to sepsis (OR, 1.68; 95% CI, 1.05 - 2.70; P = 0.031) when compared with the T/T + T/C genotype and the wild-type haplotype (TC + TT/T-allele). In the multiple organ dysfunction syndrome (MODS) subgroup, the variant haplotype was also associated with increased severity of sepsis (OR, 2.37; 95% CI, 1.13 - 4.94; P = 0.02) when compared with the wild haplotype. This association was not significant in male patients. CONCLUSIONS: The functional polymorphism in exon 5 and the variant haplotype of IRAK1 gene mediate susceptibility to and severity of sepsis. IRAK1 might be a genetic risk factor for the occurrence and development of sepsis in the Chinese population.


Subject(s)
Exons/genetics , Haplotypes/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Polymorphism, Single Nucleotide/genetics , Sepsis/genetics , Adult , Asian People , Female , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Polymorphism, Restriction Fragment Length/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...