Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 15(6): 3962-3974, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38867767

ABSTRACT

Adjuvants are indispensable ingredients in vaccine formulations. Evaluating the in vivo transport processes of adjuvants, particularly for inhalation formulations, presents substantial challenges. In this study, a nanosized adjuvant aluminum hydroxide (AlOOH) was synthesized and labeled with indocyanine green (ICG) and bovine serum albumin (BSA) to achieve strong optical absorption ability and high biocompatibility. The adjuvant nanomaterials (BSA@ICG@AlOOH, BIA) were delivered as an aerosol into the airways of mice, its distribution was monitored using photoacoustic imaging (PAI) in vivo. PAI results illustrated the gradual cross-layer transmission process of BIA in the tracheal layer, traversing approximately 250 µm from the inner layer of the trachea to the outer layer. The results were consistent with pathology. While the intensity of the BIA reduced by approximately 46.8% throughout the transport process. The ability of PAI for quantitatively characterized the dynamic transport process of adjuvant within the tracheal layer may be widely used in new vaccine development.

2.
Bioresour Technol ; 388: 129762, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716571

ABSTRACT

Efficient removal of organic arsenic (roxarsone, ROX) from wastewater is highly demanded on the purpose of human health and environmental protection. This work aims to prepare Fe-N co-doped biochar (Fe-N-BC) via one-pot hydrothermal method using waste peanut shell, FeCl3·6H2O and urea, followed by pyrolysis. The effect of Fe-N co-doping on biochar's physicochemical properties, and adsorption performance for ROX were systematically investigated. At the pyrolysis temperature of 650 °C, Fe-N-BC-650 shows a significantly increased specific surface area of 358.53 m2/g with well-developed micro-mesoporous structure. Its adsorption capacity for ROX reaches as high as 197.32 mg/g at 25 °C, with > 90 % regeneration efficiency after multiple adsorption-desorption cycles. Correlation and spectral analysis revealed that the pore filling, π-π interactions, as well as hydrogen bonding play the dominant role in ROX adsorption. These results suggest that the Fe-N co-doped biochar shows great potential in the ROX removal from wastewater with high efficiency.

3.
Materials (Basel) ; 16(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36614522

ABSTRACT

Exploiting an adsorbent with superb selectivity is of utmost importance for the remediation of Cr (VI)-laden wastewater. In this work, a novel nitrogen and sulfur functionalized 3D macroporous cellulose material (MPS) was prepared by homogeneous cross-link cellulose and polyvinylimidazole, followed by ion exchange with MoS42-. MPS exhibited high removal efficiency at a broad pH range (1.0-8.0) and large adsorption capacity (379.78 mg/g) toward Cr (VI). Particularly, outstanding selectivity with an enormous partition coefficient (1.01 × 107 mL/g) was achieved on MPS. Replacing MoS42- with Cl- and MoO42- led to a sharp decline in adsorption selectivity, demonstrating that MoS42- contributed substantially to the selectivity. Results of FTIR, XPS, and apparent kinetic analysis revealed that Cr (VI) was first pre-enriched on the MPS surface via electrostatic and dispersion forces, and then reacted with MoS42- to generate Cr (III), which deposited on MPS by forming Cr(OH)3 and chromium(III) sulfide. This study provides a new idea for designing adsorbents with a superior selectivity for removing Cr (VI) from sewage.

4.
Nanotechnology ; 27(8): 085602, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26808687

ABSTRACT

Novel hierarchical chrysanthemum-flower-like carbon nanomaterials (CFL-CNMs) were synthesized by thermal chemical vapor deposition based on acetylene decomposition. A scanning electron microscope and a transmission electron microscope were employed to observe the morphology and structure of the unconventional nanostructures. It is found that the CFL-CNMs look like a blooming chrysanthemum with a stem rather than a spherical flower. The carbon flower has an average diameter of 5 µm, an average stem diameter of 150 nm, branch diameters ranging from 20 to 70 nm, and branch lengths ranging from 0.5 to 3 µm. The morphologies of the CFL-CNMs are unlike any of those previously reported. Fishbone-like carbon nanofibers with a spindle-shaped catalyst locating at the tip can also be found. Furthermore, the catalyst split was proposed to elucidate the formation mechanism of CFL-CNMs. A large and glomerate catalyst particle at the tip of the carbon nanofiber splits into smaller catalyst particles which are catalytic-active points for branch formation, resulting in the formation of CFL-CNMs.

5.
Nanotechnology ; 27(5): 055601, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26671344

ABSTRACT

Graphene oxide nanosheets (GONSs) with a lateral size less than 100 nm have attracted more and more attention for their wide range of potential applications, from bionanotechnology and nanobiomedicine to surfactants. However, at present GONSs are commonly prepared from graphite nanofibers or graphite nanopowders which are both expensive. Here, a timesaving, low-cost, high-yield method is proposed for preparing ultrasmall uniform GONSs with an average lateral size of ∼30 nm, utilizing common graphite powder as the raw material in the absence of a strong acid. The obtained GONSs are able to disperse single-walled carbon nanotubes (SWCNTs) effectively, and the dispersion could withstand high-speed centrifugation. Consequently, GONSs could indeed serve as a superior surfactant for the dispersion of SWCNTs, and the dispersion could be further applied in electronics, as the GONSs may be further reduced to reduced GONSs or graphene nanosheets.

6.
Sci Rep ; 5: 11281, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26063127

ABSTRACT

Y-junction carbon nanocoils (Y-CNCs) were synthesized by thermal chemical vapor deposition using Ni catalyst prepared by spray-coating method. According to the emerging morphologies of Y-CNCs, several growth models were advanced to elucidate their formation mechanisms. Regarding the Y-CNCs without metal catalyst in the Y-junctions, fusing of contiguous CNCs and a tip-growth mechanism are considered to be responsible for their formation. However, as for the Y-CNCs with catalyst presence in the Y-junctions, the formation can be ascribed to nanoscale soldering/welding and bottom-growth mechanism. It is found that increasing spray-coating time for catalyst preparation generates agglomerated larger nanoparticles strongly adhering to the substrate, resulting in bottom-growth of CNCs and appearance of the metal catalyst in the Y-junctions. In the contrary case, CNCs catalyzed by isolated smaller nanoparticles develop Y-junctions with an absence of metal catalyst by virtue of weaker adhesion of catalyst with the substrate and tip-growth of CNCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...