Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Dyn ; 18(1): 2295492, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38140711

ABSTRACT

We study an avascular spherical solid tumour model with cell physiological age and resource constraints in vivo. We divide the tumour cells into three components: proliferating cells, quiescent cells and dead cells in necrotic core. We assume that the division rate of proliferating cells is nonlinear due to the nutritional and spatial constraints. The proportion of newborn tumour cells entering directly into quiescent state is considered, since this proportion can respond to the therapeutic effect of drug. We establish a nonlinear age-structured tumour cell population model. We investigate the existence and uniqueness of the model solution and explore the local and global stabilities of the tumour-free steady state. The existence and local stability of the tumour steady state are studied. Finally, some numerical simulations are performed to verify the theoretical results and to investigate the effects of different parameters on the model.


Subject(s)
Models, Biological , Neoplasms , Humans , Infant, Newborn , Cell Division , Neoplasms/pathology , Models, Theoretical , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...