Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664789

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Osteocytes , Osteogenesis , Tropomyosin , Animals , Male , Mice , Adipogenesis , Cell Differentiation , Cells, Cultured , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Transgenic , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism , Tropomyosin/metabolism , Tropomyosin/genetics
2.
Sci Total Environ ; 927: 172038, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38552967

ABSTRACT

Heavy metals (HMs) in PM2.5 gain much attention for their toxicity and carcinogenic risk. This study evaluates the health risks of PM2.5-bound HMs, focusing on how meteorological conditions affect these risks against the backdrop of PM2.5 reduction trends in China. By applying a receptor model with a meteorological normalization technique, followed by health risk assessment, this work reveals emission-driven changes in health risk of source-specific HMs in the outskirt of Tianjin during the implementation of China' second Clean Air Action (2018-2020). Sources of PM2.5-bound HMs were identified, with significant contributions from vehicular emissions (on average, 33.4 %), coal combustion (26.3 %), biomass burning (14.1 %), dust (11.7 %), industrial boilers (9.7 %), and shipping emission and sea salt (4.7 %). The source-specific emission-driven health risk can be enlarged or dwarfed by the changing meteorological conditions over time, demonstrating that the actual risks from these source emissions for a given time period may be higher or smaller than those estimated by traditional assessments. Meteorology contributed on average 56.1 % to the interannual changes in source-specific carcinogenic risk of HMs from 2018 to 2019, and 5.6 % from 2019 to 2020. For the source-specific noncarcinogenic risk changes, the contributions were 38.3 % and 46.4 % for the respective periods. Meteorology exerts a more profound impact on daily risk (short-term trends) than on annual risk (long-term trends). Such meteorological impacts differ among emission sources in both sign and magnitude. Reduced health risks of HMs were largely from targeted regulatory measures on sources. Therefore, the meteorological covariates should be considered to better evaluate the health benefits attributable to pollution control measures in health risk assessment frameworks.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Metals, Heavy , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Risk Assessment , Metals, Heavy/analysis , China , Air Pollution/statistics & numerical data , Humans , Environmental Exposure/statistics & numerical data , Vehicle Emissions/analysis
3.
Huan Jing Ke Xue ; 44(5): 2492-2501, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177924

ABSTRACT

Ambient air pollution is a dominant determinant of health. The health effects and economic losses due to air pollution are very important for decision-making. Since the implementation of the "Air Pollution Prevention and Control Action Plan" and "blue sky defense war" policies, the air quality of Tianjin has changed significantly. Here, the health effects and economic losses attributable to ambient air pollution in Tianjin from 2013 to 2020 wereestimated. For the particulate matter which has complex components, we assessed the inhalation health risks of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in PM2.5. The variation in the concentration of the main components of PM2.5 was also analyzed. The results showed that improved air quality had positive health benefits. The health benefits from SO2 were the highest among the six air pollutants, and 3786 deaths were avoided in 2020 compared to in 2013 due to lower SO2 concentration. The economic losses caused by air pollutants ranged from several billion to ten billion yuan. Among the six air pollutants, particulate matter and ozone had higher health losses in recent years. The health risks of heavy metals and PAHs in PM2.5 showed a decreasing trend. However, Cr(Ⅵ), As, Cd, and Ni in PM2.5in the winter of 2020 still had respiratorysystem carcinogenic risk, whereas there was no health risk of PAHs in PM2.5in 2019-2020. The concentrations of main components of PM2.5 have decreased significantly. In the future, the reduction of health loss caused by air pollution depends on synergy governance of particulate matter and ozone and further research on health effects.


Subject(s)
Air Pollutants , Air Pollution , Metals, Heavy , Ozone , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring/methods , Air Pollution/adverse effects , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , China
4.
Int J Biol Sci ; 19(8): 2409-2427, 2023.
Article in English | MEDLINE | ID: mdl-37215980

ABSTRACT

Inadequate osteogenesis and excessive adipogenesis of bone marrow mesenchymal stem cells (BMSCs) are key factors in the pathogenesis of osteoporosis. Patients with Alzheimer's disease (AD) have a higher incidence of osteoporosis than healthy adults, but the underlying mechanism is not clear. Here, we show that brain-derived extracellular vesicles (EVs) from adult AD or wild-type mice can cross the blood-brain barrier to reach the distal bone tissue, while only AD brain-derived EVs (AD-B-EVs) significantly promote the shift of the BMSC differentiation fate from osteogenesis to adipogenesis and induce a bone-fat imbalance. MiR-483-5p is highly enriched in AD-B-EVs, brain tissues from AD mice, and plasma-derived EVs from AD patients. This miRNA mediates the anti-osteogenic, pro-adipogenic, and pro-osteoporotic effects of AD-B-EVs by inhibiting Igf2. This study identifies the role of B-EVs as a promoter of osteoporosis in AD by transferring miR-483-5p.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , MicroRNAs , Osteoporosis , Mice , Animals , Alzheimer Disease/genetics , Bone and Bones , MicroRNAs/genetics , Cell Differentiation/genetics , Osteogenesis/genetics , Brain/pathology
5.
Huan Jing Ke Xue ; 44(4): 1811-1820, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040932

ABSTRACT

Based on the hourly O3 concentration data of 337 prefectural-level divisions and simultaneous surface meteorological data in China, we applied empirical orthogonal function (EOF) analysis to analyze the main spatial patterns, variation trends, and main meteorological driving factors of O3 concentration in China from March to August in 2019-2021. In this study, a KZ (Kolmogorov-Zurbenko) filter was used to decompose the time series of O3 concentration and simultaneous meteorological factors into corresponding short-term, seasonal, and long-term components in 31 provincial capitals.Then, the stepwise regression was used to establish the relationship between O3 and meteorological factors. Ultimately, the long-term component of O3 concentration after "meteorological adjustment" was reconstructed. The results indicated that the first spatial patterns of O3 concentration showed a convergent change, that is, the volatility of O3 concentration was weakened in the high-value region of variability and enhanced in the low-value region.Before and after the meteorological adjustment, the variation trend of O3 concentration in different cities was different to some extent. The adjusted curve was "flatter" in most cities. Among them, Fuzhou, Haikou, Changsha, Taiyuan, Harbin, and Urumqi were greatly affected by emissions. Shijiazhuang, Jinan, and Guangzhou were greatly affected by meteorological conditions. Beijing, Tianjin, Changchun, and Kunming were greatly affected by emissions and meteorological conditions.

6.
J Food Sci ; 88(2): 837-847, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36624616

ABSTRACT

A new method combining ultraviolet (UV) spectrophotometry and MoO3- x nanosheets was developed for the rapid and accurate determination of ascorbic acid (AA) content in fruit and vegetables in this study. MoO3- x nanosheets were prepared by the liquid exfoliation method using AA as the reducing agent, and the content of AA can be determined by a UV spectrophotometer. Experimental conditions for the MoO3- x nanosheet method, including grinding time, ethanol concentration, sonication time, and water bath temperature were also optimized. The morphology of MoO3- x nanosheets was characterized by atomic force microscope. The results showed that the average thickness of MoO3- x nanosheets was 2.1-5.8 nm. The MoO3- x nanosheets method had a good linearity in the AA concentration range of 0.01-0.05 mg/ml (R2  = 0.9996). The limit of detection was 0.031 µg/ml, and the limit of quantitation was 0.095 µg/ml. The spiked recoveries were in the range of 88.79%-116.76%. The MoO3- x nanosheets method was validated for the determination of AA content in five different fruit and vegetables samples with relative standard deviations less than 2%.


Subject(s)
Ascorbic Acid , Vegetables , Ascorbic Acid/analysis , Fruit/chemistry , Spectrophotometry, Ultraviolet
7.
Sci Total Environ ; 858(Pt 3): 159881, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36334675

ABSTRACT

A comprehensive set of observations were collected along a sea-coast-inland area. According to these observations, the planetary boundary layer heights (PBLH) during winter and summer for sampling locations in sea, coast, and inland areas were 737 m, 483 m and 372 m, and 450 m, 645 m and 646 m, respectively. Little seasonal difference was observed for the daily variation of sensible heat flux over the sea, with the maximum of 55 W/m2 at 12:00 in winter and 27 W/m2 at 13:00 in summer. The duration of sea breeze was ∼10 h in summer and only 3 h in winter, extended to inland area ∼ 50 km and upward 920 m vertically. PM2.5 at coastal area was about 5 µg/m3 higher than inland during summer afternoon. Over the sea, PM2.5 mainly concentrated below 200 m in winter, increased with height at night and decreased with height in the morning below 300 m in summer. A typical land-sea breeze episode was analyzed with observed and simulated result. According to the observed data, the sea breeze extended to inland ∼50 km and upward 300 m vertically. From the simulating result, there was a clear temperature gradient between sea and land from surface to 400 m, when influenced by the sea breeze, the wind and temperature profiles showed different characteristics, and forming a high concentration center of PM2.5 at 300 m. These results provide insights into the structure of land-sea planetary boundary layer, and provide support for the prediction of heavy pollution episode.

8.
Adv Sci (Weinh) ; 9(17): e2105316, 2022 06.
Article in English | MEDLINE | ID: mdl-35508803

ABSTRACT

Both Alzheimer's disease (AD) and osteoporosis (OP) are common age-associated degenerative diseases and are strongly correlated with clinical epidemiology. However, there is a lack of clear pathological relationship between the brain and bone in the current understanding. Here, it is found that young osteocyte, the most abundant cells in bone, secretes extracellular vesicles (OCYYoung -EVs) to ameliorate cognitive impairment and the pathogenesis of AD in APP/PS1 mice and model cells. These benefits of OCYYoung -EVs are diminished in aged osteocyte-derived EVs (OCYAged -EVs). Based on the self-constructed OCY-EVs tracer transgenic mouse models and the in vivo fluorescent imaging system, OCY-EVs have been observed to be transported to the brain under physiological and pathological conditions. In the hippocampal administration of Aß40 induced young AD model mice, the intramedullary injection of Rab27a-shRNA adenovirus inhibits OCYYoung -EVs secretion from bone and aggravates cognitive impairment. Proteomic quantitative analysis reveals that OCYYoung -EVs, compared to OCYAged -EVs, enrich multiple protective factors of AD pathway. The study uncovers the role of OCY-EV as a regulator of brain health, suggesting a novel mechanism in bone-brain communication.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Aging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Extracellular Vesicles/metabolism , Mice , Osteocytes/metabolism , Proteomics
9.
Nat Commun ; 13(1): 1453, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304471

ABSTRACT

Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called "calcification paradox". Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Animals , Bone Matrix , Cell Differentiation , Female , Mice , MicroRNAs/genetics , Osteogenesis
10.
J Colloid Interface Sci ; 616: 189-200, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35203032

ABSTRACT

Immune checkpoint blockade (ICB) therapy, represented by programmed cell death protein 1 (PD-1) and its ligand (PD-L1) monoclonal antibodies (mAbs), has shown an obvious benefit for melanoma immunotherapy, but the overall response rate is still low. To find an effective combination therapy strategy, we successfully produced small size silver nanoparticles coated with sucrose (S-AgNPs) as potent adjuvants. The antitumor effects of S-AgNPs were tested in vitro and comparatively investigated in immunodeficient and immunocompetent mice with melanoma. Fluorescence-activated cell sorting and immunofluorescent staining analysis were conducted to identify the tumor microenvironments. The expression of PD-L1 in tumors was tested by multiple methods. The combination therapy and potential toxicity of S-AgNPs and PD-1 mAbs were assessed in melanoma-bearing mice. In our findings, S-AgNPs presented potent antitumor effects, good druggability and low systemic toxicity. Functionally, we found that S-AgNPs exhibited better antitumor effects in immunocompetent mice. Mechanistically, we showed that S-AgNPs suppress tumor cell proliferation by inducing cellular apoptosis and promote cytotoxic CD8+ T cell infiltration and activity. Preclinically, S-AgNPs showed excellent local antitumor activity and mild systemic immunotoxicity with PD-1 mAbs in the inhibition of melanoma proliferation, providing a novel clinical combination treatment strategy.


Subject(s)
Melanoma , Metal Nanoparticles , Animals , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/metabolism , Cell Line, Tumor , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Melanoma/pathology , Mice , Programmed Cell Death 1 Receptor/metabolism , Silver/pharmacology , Tumor Microenvironment
11.
J Orthop Res ; 40(7): 1563-1576, 2022 07.
Article in English | MEDLINE | ID: mdl-34727384

ABSTRACT

Magnesium ion (Mg2+ ) has received increased attention due to the roles it plays in promoting osteogenesis and preventing inflammation. This study was designed to investigate the mechanism by which Mg2+ influences the osteoblastic differentiation of bone marrow stromal stem cells (BMSCs). The polarization of Mø (macrophages) was measured after treatment with Mg2+ . Meanwhile, autophagy in Mø was measured by detecting LC3B expression. Mø-derived exosomes were isolated and cocultured with BMSCs; after which, osteogenic differentiation was evaluated by Alizarin Red staining and detection of alkaline phosphatase (ALP). Our results showed that Mg2+ could induce autophagy in macrophages and modulate the M1/M2 polarization of macrophages. Mg2+ -mediated macrophages could facilitate the osteogenic differentiation of BMSCs by regulating autophagy, and this facilitation by Mg2+ -mediated macrophages was closely related to macrophage-derived exosomes, and especially exosomes containing miR-381. However, miR-381 in macrophages did not influence autophagy or the polarization of Mg2+ -mediated macrophages. Furthermore, macrophage-derived exosomes containing miR-381 mainly determined the osteogenic differentiation of BMSCs. Mg2+ -mediated macrophages were shown to promote the osteogenic differentiation of BMSCs via autophagy through reducing miR-381 in macrophage-derived exosomes. In conclusion, our results suggest Mg2+ -mediated macrophage-derived exosomes containing miR-381 as novel vehicles for promoting the osteogenic differentiation of BMSCs.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Autophagy , Bone Marrow Cells/metabolism , Cell Differentiation , Cells, Cultured , Exosomes/metabolism , Macrophages/metabolism , Magnesium/metabolism , MicroRNAs/metabolism , Osteogenesis
12.
J Acoust Soc Am ; 150(5): 3929, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34852603

ABSTRACT

The boundary element method- (BEM-) based free field recovery technique (FFRT) has been proposed to recover the free field radiated by an arbitrarily shaped source from the mixed field that would be measured in a noisy environment. However, that technique requires that the boundary integral equation should be established on an enclosed hologram surface surrounding the source, which means that the hologram surface should be discretized into elements and the measurement points should be located on the nodes of the elements. For large-scale or mid-high frequency problems, it makes the total number of measurement points huge since it should obey the criterion of more than six elements per wavelength, which put forward very high requirements for holographic data measurement. To overcome this problem, a more flexible BEM-based FFRT without the restriction on the locations of measurement points is proposed in this study. In virtue of this, a three-dimensional scanning measurement method can be applied to acquire holographic data with high efficiency. The effectiveness of the proposed method is validated by two numerical simulations and an experiment.

13.
Adv Sci (Weinh) ; 8(24): e2100808, 2021 12.
Article in English | MEDLINE | ID: mdl-34719888

ABSTRACT

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.


Subject(s)
Adipocytes/metabolism , Bone and Bones/metabolism , Neuropeptide Y/metabolism , Osteoblasts/metabolism , Osteoporosis/metabolism , Adipogenesis/physiology , Animals , Bone and Bones/physiopathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Osteocytes/metabolism , Osteogenesis/physiology , Osteoporosis/physiopathology
15.
Adv Sci (Weinh) ; 8(9): 2004831, 2021 05.
Article in English | MEDLINE | ID: mdl-33977075

ABSTRACT

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.


Subject(s)
Bone Density/physiology , Bone and Bones/metabolism , Extracellular Vesicles/metabolism , Gastrointestinal Microbiome/physiology , Osteoporosis/metabolism , Osteoporosis/physiopathology , Age Factors , Aged , Animals , Child, Preschool , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged
16.
Int J Nanomedicine ; 16: 2949-2963, 2021.
Article in English | MEDLINE | ID: mdl-33907401

ABSTRACT

PURPOSE: Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS: Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS: Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION: Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Extracellular Vesicles/immunology , Macrophages/drug effects , Prostatic Neoplasms/drug therapy , Akkermansia/chemistry , Animals , Antineoplastic Agents, Immunological/chemistry , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Immunophenotyping , Immunotherapy/methods , Interferon-gamma/metabolism , Macrophages/immunology , Male , Mice, Inbred C57BL , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology
17.
Theranostics ; 11(5): 2395-2409, 2021.
Article in English | MEDLINE | ID: mdl-33500732

ABSTRACT

Alzheimer's disease (AD) is currently ranked as the third leading cause of death for eldly people, just behind heart disease and cancer. Autophagy is declined with aging. Our study determined the biphasic changes of miR-331-3p and miR-9-5p associated with AD progression in APPswe/PS1dE9 mouse model and demonstrated inhibiting miR-331-3p and miR-9-5p treatment prevented AD progression by promoting the autophagic clearance of amyloid beta (Aß). Methods: The biphasic changes of microRNAs were obtained from RNA-seq data and verified by qRT-PCR in early-stage (6 months) and late-stage (12 months) APPswe/PS1dE9 mice (hereinafter referred to as AD mice). The AD progression was determined by analyzing Aß levels, neuron numbers (MAP2+) and activated microglia (CD68+IBA1+) in brain tissues using immunohistological and immunofluorescent staining. MRNA and protein levels of autophagic-associated genes (Becn1, Sqstm1, LC3b) were tested to determine the autophagic activity. Morris water maze and object location test were employed to evaluate the memory and learning after antagomirs treatments in AD mice and the Aß in the brain tissues were determined. Results: MiR-331-3p and miR-9-5p are down-regulated in early-stage of AD mice, whereas up-regulated in late-stage of AD mice. We demonstrated that miR-331-3p and miR-9-5p target autophagy receptors Sequestosome 1 (Sqstm1) and Optineurin (Optn), respectively. Overexpression of miR-331-3p and miR-9-5p in SH-SY5Y cell line impaired autophagic activity and promoted amyloid plaques formation. Moreover, AD mice had enhanced Aß clearance, improved cognition and mobility when treated with miR-331-3p and miR-9-5p antagomirs at late-stage. Conclusion: Our study suggests that using miR-331-3p and miR-9-5p, along with autophagic activity and amyloid plaques may distinguish early versus late stage of AD for more accurate and timely diagnosis. Additionally, we further provide a possible new therapeutic strategy for AD patients by inhibiting miR-331-3p and miR-9-5p and enhancing autophagy.


Subject(s)
Alzheimer Disease/prevention & control , Autophagy , Disease Models, Animal , Gene Expression Regulation , MicroRNAs/antagonists & inhibitors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Humans , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , Neurons/metabolism , Neurons/pathology
18.
Autophagy ; 17(10): 2766-2782, 2021 10.
Article in English | MEDLINE | ID: mdl-33143524

ABSTRACT

Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; µCT: micro computed tomography.


Subject(s)
Aging , Autophagy , Cell Cycle Proteins , Fatty Acid Binding Protein 3 , Membrane Transport Proteins , Mesenchymal Stem Cells , Adipogenesis , Animals , Cell Cycle Proteins/metabolism , Cell Differentiation , Fatty Acid Binding Protein 3/metabolism , Membrane Transport Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis , Osteoporosis , X-Ray Microtomography
19.
Front Oncol ; 10: 586580, 2020.
Article in English | MEDLINE | ID: mdl-33363016

ABSTRACT

Osteosarcoma is a malignant primary bone tumor commonly occurring in children and adolescents. The treatment of local osteosarcoma is mainly based on surgical resection and chemotherapy, whereas the improvement of overall survival remains stagnant, especially in recurrent or metastatic cases. Tumor microenvironment (TME) is closely related to the occurrence and development of tumors, and macrophages are among the most abundant immune cells in the TME. Due to their vital roles in tumor progression, macrophages have gained increasing attention as the new target of tumor immunotherapy. In this review, we present a brief overview of macrophages in the TME and highlight the clinical significance of macrophages and their roles in the initiation and progression of osteosarcoma. Finally, we summarize the therapeutic approaches targeting macrophage, which represent a promising strategy in osteosarcoma therapies.

20.
Dis Model Mech ; 13(11)2020 12 01.
Article in English | MEDLINE | ID: mdl-33033107

ABSTRACT

Improving revascularization is one of the major measures in fracture treatment. Moderate local inflammation triggers angiogenesis, whereas systemic inflammation hampers angiogenesis. Previous studies showed that Akkermansia muciniphila, a gut probiotic, ameliorates systemic inflammation by tightening the intestinal barrier. In this study, fractured mice intragastrically administrated with A. muciniphila were found to display better fracture healing than mice treated with vehicle. Notably, more preosteclasts positive for platelet-derived growth factor-BB (PDGF-BB) were induced by A. muciniphila at 2 weeks post fracture, coinciding with increased formation of type H vessels, a specific vessel subtype that couples angiogenesis and osteogenesis, and can be stimulated by PDGF-BB. Moreover, A. muciniphila treatment significantly reduced gut permeability and inflammation at the early stage. Dextran sulfate sodium (DSS) was used to disrupt the gut barrier to determine its role in fracture healing and whether A. muciniphila still can stimulate bone fracture healing. As expected, A. muciniphila evidently improved gut barrier, reduced inflammation and restored the impaired bone healing and angiogenesis in DSS-treated mice. Our results suggest that A. muciniphila reduces intestinal permeability and alleviates inflammation, which probably induces more PDGF-BB+ preosteoclasts and type H vessel formation in callus, thereby promoting fracture healing. This study provides the evidence for the involvement of type H vessels in fracture healing and suggests the potential of A. muciniphila as a promising strategy for bone healing.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Femoral Fractures/microbiology , Femoral Fractures/pathology , Fracture Healing , Gastrointestinal Tract/microbiology , Inflammation/microbiology , Neovascularization, Physiologic , Akkermansia/physiology , Animals , Bony Callus/blood supply , Dextran Sulfate , Female , Fracture Healing/drug effects , Gastrointestinal Tract/drug effects , Mice , Neovascularization, Physiologic/drug effects , Osteoclasts/drug effects , Osteoclasts/pathology , Osteogenesis/drug effects , Permeability , Probiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...