Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nano Lett ; 23(5): 1781-1786, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847503

ABSTRACT

Noise spectroscopy elucidates the fundamental noise sources in spin systems, thereby serving as an essential tool toward developing spin qubits with long coherence times for quantum information processing, communication, and sensing. But existing techniques for noise spectroscopy that rely on microwave fields become infeasible when the microwave power is too weak to generate Rabi rotations of the spin. Here, we demonstrate an alternative all-optical approach to performing noise spectroscopy. Our approach utilizes coherent Raman rotations of the spin state with controlled timing and phase to implement Carr-Purcell-Meiboom-Gill pulse sequences. Analyzing the spin dynamics under these sequences enables us to extract the noise spectrum of a dense ensemble of nuclear spins interacting with a single spin in a quantum dot, which has thus far been modeled only theoretically. By providing spectral bandwidths of over 100 MHz, our approach enables studies of spin dynamics and decoherence for a broad range of solid-state spin qubits.

2.
Nano Lett ; 22(19): 7959-7964, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36129824

ABSTRACT

Optically active spin systems coupled to photonic cavities with high cooperativity can generate strong light-matter interactions, a key ingredient in quantum networks. However, obtaining high cooperativities for quantum information processing often involves the use of photonic crystal cavities that feature a poor optical access from the free space, especially to circularly polarized light required for the coherent control of the spin. Here, we demonstrate coupling with a cooperativity as high as 8 of an InAs/GaAs quantum dot to a fabricated bullseye cavity that provides nearly degenerate and Gaussian polarization modes for efficient optical accessing. We observe spontaneous emission lifetimes of the quantum dot as short as 80 ps (an ∼15 Purcell enhancement) and a ∼80% transparency of light reflected from the cavity. Leveraging the induced transparency for photon switching while coherently controlling the quantum dot spin could contribute to ongoing efforts of establishing quantum networks.


Subject(s)
Quantum Dots , Optics and Photonics , Photons
3.
Nano Lett ; 19(10): 7072-7077, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31483668

ABSTRACT

Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.

4.
Science ; 361(6397): 57-60, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29976819

ABSTRACT

Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, the deterministic control of an optical signal with a single photon requires strong interactions with a quantum memory, which has been challenging to achieve in a solid-state platform. We demonstrate a single-photon switch and transistor enabled by a solid-state quantum memory. Our device consists of a semiconductor spin qubit strongly coupled to a nanophotonic cavity. The spin qubit enables a single 63-picosecond gate photon to switch a signal field containing up to an average of 27.7 photons before the internal state of the device resets. Our results show that semiconductor nanophotonic devices can produce strong and controlled photon-photon interactions that could enable high-bandwidth photonic quantum information processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...