Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 930: 172484, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38631636

ABSTRACT

Exposure to endocrine-disrupting chemicals (EDCs) in freshwater systems has garnered increasing attention. A comprehensive analysis of the migration patterns, bioaccumulation, and consumer health risk of EDCs along the Xiangjiang River due to fish consumption from the river ecosystem was provided. Twenty natural and synthetic target EDCs were detected and analyzed from the water, sediments, and fish samples collected along the Xiangjiang River. There were significant correlations between the EDC concentrations in fish and the sediments. This revealed that EDCs in sediments play a dominant role in the uptake of EDCs by fish. The bioaccumulation factor and biota-sediment accumulation factor were calculated, with the highest values observed for nonylphenol. Pearson's correlation analysis showed that bisphenol A is the most reliable biological indicator of EDC contamination in fish. Furthermore, based on the threshold of toxicological concerns and the health risk with dietary intake, crucian carp and catfish from the Xiangjiang River pose a certain risk for children and pregnant women compared to grass carp. The Monte Carlo simulation results indicated a certain risk of cumulative ∑EDC exposure for local residents due to fish consumption.


Subject(s)
Endocrine Disruptors , Environmental Monitoring , Fishes , Food Chain , Geologic Sediments , Rivers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Endocrine Disruptors/analysis , Rivers/chemistry , Animals , Humans , Geologic Sediments/chemistry , China , Risk Assessment , Bioaccumulation , Food Contamination/analysis
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069311

ABSTRACT

Although recent research progress on the abundant C-to-U RNA editing events in plant chloroplasts and mitochondria has uncovered many recognition factors and their molecular mechanisms, the intrinsic regulation of RNA editing within plants remains largely unknown. This study aimed to establish a regulatory relationship in Arabidopsis between the plant hormone auxin and chloroplast RNA editing. We first analyzed auxin response elements (AuxREs) present within promoters of chloroplast editing factors reported to date. We found that each has more than one AuxRE, suggesting a potential regulatory role of auxin in their expression. Further investigation unveiled that the depletion of auxin synthesis gene YUC2 reduces the expression of several editing factors. However, in yuc2 mutants, only the expression of CRR4, DYW1, ISE2, and ECD1 editing factors and the editing efficiency of their corresponding editing sites, ndhD-2 and rps14-149, were simultaneously suppressed. In addition, exogenous IAA and the overexpression of YUC2 enhanced the expression of these editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These results suggested a direct effect of auxin upon the editing of the ndhD-2 and rps14-149 sites through the modulation of the expression of the editing factors. We further demonstrated that ARF1, a downstream transcription factor in the auxin-signaling pathway, could directly bind to and inactivate the promoters of CRR4, DYW1, and ISE2 in a dual-luciferase reporter system, thereby inhibiting their expression. Moreover, the overexpression of ARF1 in Arabidopsis significantly reduced the expression of the three editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These data suggest that YUC2-mediated auxin biosynthesis governs the RNA-editing process through the ARF1-dependent signal transduction pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Ribosomal Proteins/metabolism , RNA Editing , RNA, Chloroplast/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Plant Commun ; 4(1): 100461, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36221851

ABSTRACT

It has been reported that Arabidopsis chloroplast accD transcripts undergo RNA editing and that loss of accD-C794 RNA editing does not affect plant growth under normal conditions. To date, the exact biological role of accD-C794 editing has remained elusive. Here, we reveal an unexpected role for accD-C794 editing in response to heat stress. Loss of accD-C794 editing results in a yellow and dwarf phenotype with decreased chloroplast gene expression under heat stress, and artificial improvement of C794-edited accD gene expression enhances heat tolerance in Arabidopsis. These data suggest that accD-C794 editing confers heat tolerance in planta. We also found that treatment with the product of acetyl coenzyme A carboxylase (ACCase) could allay mutant phenotypic characteristics and showed that a mutation in the CAC3 gene for the α-subunit of ACCase was associated with dwarfism under heat stress. These observations indicate that defective accD-C794 editing may be intrinsic to reduced ACCase activity, thereby contributing to heat sensitivity. ACCase catalyzes the committed step of de novo fatty acid (FA) biosynthesis. FA content analysis revealed that unsaturated oleic (C18:1) and linoleic acids (C18:2) were low in the accD-C794 editing-defective mutant but high in the C794-edited accD-overexpressing plants compared with the wild type. Supplying exogenous C18:1 and C18:2 could rescue the mutant phenotype, suggesting that these FAs play an essential role in tolerance to heat stress. Transmission electron microscopy observations showed that heat stress seriously affected the membrane architecture in accD editing-defective mutants but not in accD-overexpressing plants. These results provide the first evidence that accD-C794 editing regulates FA biosynthesis for maintenance of membrane structural homeostasis under heat stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA-Binding Proteins , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Thermotolerance/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361935

ABSTRACT

The large-scale production and frequent use of endocrine-disrupting chemicals (EDCs) have led to the continuous release and wide distribution of these pollutions in the natural environment. At low levels, EDC exposure may cause metabolic disorders, sexual development, and reproductive disorders in aquatic animals and humans. Adsorption treatment, particularly using nanocomposites, may represent a promising and sustainable method for EDC removal from wastewater. EDCs could be effectively removed from wastewater using various carbon-based nanomaterials, such as carbon nanofiber, carbon nanotubes, graphene, magnetic carbon nanomaterials, carbon membranes, carbon dots, carbon sponges, etc. Important applications of carbon nanocomposites for the removal of different kinds of EDCs and the theory of adsorption are discussed, as well as recent advances in carbon nanocomposite synthesis technology and characterization technology. Furthermore, the factors affecting the use of carbon nanocomposites and comparisons with other adsorbents for EDC removal are reviewed. This review is significant because it helps to promote the development of nanocomposites for the decontamination of wastewater.


Subject(s)
Endocrine Disruptors , Nanocomposites , Nanotubes, Carbon , Water Pollutants, Chemical , Animals , Humans , Endocrine Disruptors/chemistry , Wastewater/chemistry , Adsorption
5.
Molecules ; 27(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335173

ABSTRACT

The distribution of pharmatically important alkaloids gelsemine, koumine, and gelsenicine in Gelsemium elegans tissues is a hot topic attracting research attention. Regretfully, the in planta visual distribution details of these alkaloids are far from clear although several researches reported the alkaloid quantification in G. elegans by LC-MS/MS. In this study, mass imaging spectrometry (MSI) was employed to visualize the in situ visualization of gelsemine, koumine, and gelsenicine in different organs and tissues of G. elegans at different growth stages, and the relative quantification of three alkaloids were performed according to the image brightness intensities captured by the desorption electrospray ionization MSI (DESI-MSI). The results indicated that these alkaloids were mainly accumulated in pith region and gradually decreased from pith to epidermis. Interestingly, three alkaloids were found to be present in higher abundance in the leaf vein. Along with the growth and development, the accumulation of these alkaloids was gradually increased in root and stem. Moreover, we employed LC-MS/MS to quantify three alkaloids and further validated the in situ distributions. The content of koumine reached 249.2 µg/g in mature roots, 272.0 µg/g in mature leaves, and 149.1 µg/g in mature stems, respectively, which is significantly higher than that of gelsemine and gelsenicine in the same organ. This study provided an accurately in situ visualization of gelsemine, koumine, and gelsenicine in G. elegans, and would be helpful for understanding their accumulation in plant and guiding application.


Subject(s)
Alkaloids , Tandem Mass Spectrometry , Chromatography, Liquid , Indole Alkaloids
6.
Molecules ; 26(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072521

ABSTRACT

Tea (Camellia sinensis) is one of the most important cash crops in the world. Theanine, as an important amino acid component in tea, is a key quality index for excellent tea quality and high economic value. People increase theanine accumulation in tea mainly through the application of nitrogen fertilizer, shading and pruning. However, these methods are not effective. In this study, we treated tea buds with a 100 µM solution of GA3 containing 1‰ tween-20, investigated the effects of GA3 on theanine accumulation, bud yield, chlorophyll fluorescence parameters and expression level of theanine biosynthesis pathway genes in tea plant by qPCR, LC-MS/MS etc. Results showed that change trends of theanine and GA3 was extremely positively correlated with each other. Exogenous GA3 upregulated the expression level of theanine biosynthesis pathway genes, caused an increase of theanine content (mg·g-1) by 27% in tea leaves compared with Mock, and accelerated the germination of buds and elongation of shoots, which lead to a significant increase of tea yield by 56% (w/w). Moreover, the decrease of chlorophyll contents, photochemical quenching coefficient (qP) and relative electron transport rate (rETR) under GA3 treatment suggested that GA3 reduced photosynthesis in the tender tea leaves, indicating that the decline of carbon assimilation in tea plants was conducive to the nitrogen metabolism, and it was beneficial to the accumulation of theanine. This study provided a new technical and theoretical support for the precise control of tea quality components and phenophase.


Subject(s)
Camellia sinensis/growth & development , Camellia sinensis/metabolism , Gibberellins/pharmacology , Plant Leaves/metabolism , Tea/metabolism , Amino Acids/chemistry , Chlorophyll/chemistry , Chromatography, Liquid , Gibberellins/chemistry , Glutamates/chemistry , Nitrogen/metabolism , Photosynthesis , Plant Proteins/genetics , Plant Shoots , Polymerase Chain Reaction , Tandem Mass Spectrometry
7.
Molecules ; 26(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070428

ABSTRACT

Magnetic MXene composite Fe3O4@Ti3C2 was successfully prepared and employed as 17α-ethinylestradiol (EE2) adsorbent from water solution. The response surface methodology was employed to investigate the interactive effects of adsorption parameters (adsorption time, pH of the solution, initial concentration, and the adsorbent dose) and optimize these parameters for obtaining maximum adsorption efficiency of EE2. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Optimization of the process variables for maximum adsorption of EE2 by Fe3O4@Ti3C2 was performed using the quadratic model. The model predicted maximum adsorption of 97.08% under the optimum conditions of the independent variables (adsorption time 6.7 h, pH of the solution 6.4, initial EE2 concentration 0.98 mg L-1, and the adsorbent dose 88.9 mg L-1) was very close to the experimental value (95.34%). pH showed the highest level of significance with the percent contribution (63.86%) as compared to other factors. The interactive influences of pH and initial concentration on EE2 adsorption efficiency were significant (p < 0.05). The goodness of fit of the model was checked by the coefficient of determination (R2) between the experimental and predicted values of the response variable. The response surface methodology successfully reflects the impact of various factors and optimized the process variables for EE2 adsorption. The kinetic adsorption data for EE2 fitted well with a pseudo-second-order model, while the equilibrium data followed Langmuir isotherms. Thermodynamic analysis indicated that the adsorption was a spontaneous and endothermic process. Therefore, Fe3O4@Ti3C2 composite present the outstanding capacity to be employed in the remediation of EE2 contaminated wastewaters.


Subject(s)
Ethinyl Estradiol/chemistry , Magnetics , Thermodynamics , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Ethinyl Estradiol/isolation & purification , Kinetics , Metal Nanoparticles/chemistry , Wastewater/chemistry , X-Ray Diffraction
8.
Phytochemistry ; 183: 112611, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33341665

ABSTRACT

Magnetic solid phase extraction integrated with in situ derivations for the profiling of 12 phytohormones in a single rapeseed seed was developed by using ultra-high performance liquid chromatography-tandem mass spectrometry. The Fe3O4@Ti3C2@ß-cyclodextrin nanoparticles were firstly synthesized and used as an adsorbent for the solid-phase extraction of phytohormones. The magnetic dispersive solid-phase extraction and in situ derivation by the addition of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide were ingeniously combined. This efficient pre-treatment method integrated the extraction, purification, and derivatization processes into one single step. Satisfactory methodological performance was achieved by optimization of the parameters. Linearities (R2 > 0.9928) and recoveries (80.4 %-115.1%) at three spiked levels, as well as the low matrix effect (from -16.63% to 17.06%) and limits of detection (0.89-13.62 pg/mL) were obtained. The spatio-temporal profiling of target phytohormones in different tissues of rapeseed germination was investigated. This method was successfully employed for analyzing target phytohormones in different oilseeds samples.


Subject(s)
Plant Growth Regulators , beta-Cyclodextrins , Chromatography, High Pressure Liquid , Chromatography, Liquid , Limit of Detection , Magnetic Phenomena , Solid Phase Extraction , Tandem Mass Spectrometry , Titanium
9.
Sci Total Environ ; 704: 135277, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31831230

ABSTRACT

The occurrence of endocrine disrupting chemicals (EDCs) in swimming pool waters has been scarcely investigated. In this study, the concentrations of 20 EDCs (4 phenols, 6 estrogens, 4 progestogens, 5 androgens, and 1 pharmaceutical) in 40 outdoor and indoor swimming pools in Changsha, China were investigated. Out of them, two phenols (bisphenol A and 4-tert-octylphenol), three estrogens (17ß-estradiol, 17ɑ-ethinlestradiol (EE2), and hexestrol), one pharmaceutical (caffeine), and two progestogens (progesterone and levonorgestrel) were detected in the collected samples. The androgens were not detected. Bisphenol A and caffeine were the dominant EDCs at concentrations of ND-23.22 ng/L and ND-39.08 ng/L, respectively. The levels of caffeine were significantly higher in indoor swimming pools (11.15 ng/L in average) than those in outdoor pools (1.90 ng/L in average) (p < 0.05), owing to the less sun's UV radiation and less use of sunscreens containing caffeine. The progestogens (progesterone and levonorgestrel) and estrogens (17ß-estradiol and hexestrol) were only detected in outdoor swimming pools. The detection frequencies and concentrations of bisphenol A and caffeine in downtown pools were significantly higher than those in outskirt pools. Besides, the correlations between the concentrations of EDCs and water quality parameters evaluated by the Spearman correlation analysis implied that residual chlorine had strong oxidant capable to bisphenol A and suggested that caffeine could be a potential indicator of organic contamination in swimming pool water. Finally, a quantitative risk assessment revealed that non-athletic child and athletic adult female were vulnerable subpopulations. The EDItotal of EE2 for athletic child, non-athletic female, non-athletic male, and non-athletic child were higher than ADIEE2 adopted by Australia and the EDItotal of EE2 for athletic female and athletic male were higher than ADIEE2 adopted by the United States.


Subject(s)
Endocrine Disruptors/analysis , Environmental Monitoring , Swimming Pools , Water Pollutants, Chemical/analysis , Benzhydryl Compounds , China , Estradiol/analysis , Estrogens/analysis , Estrone/analysis , Phenols , Progestins/analysis , Risk Assessment
10.
Ecotoxicol Environ Saf ; 167: 476-484, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30368141

ABSTRACT

Endocrine-disrupting compounds (EDCs) were seasonally investigated in the surface water of the Xiangjiang River (south China) in order to understand their spatio-temporal distribution, source apportionment, and ecological risks. The occurrence of 21 EDCs were determined with liquid chromatography-tandem mass spectrometry in the water samples collected along the river over four seasons, and the results were statistically analyzed. The concentrations of progestagens, androgens, estrogens ranged from not detected (ND) to 98.3 ng L-1; while the concentrations of alkylphenols ranged from 0.8 to 3.1 × 103 ng L-1; and that of caffeine ranged from 0.1 to 49.8 ng L-1. The detection frequencies of bisphenol A, 4-tert-octylphenol, 4-n-nonylphenol, estrone, and 17ß-estradiol were 95-100% during the four sampling campaigns. The seasonal and spatial variation trend of EDCs in the Xiangjiang River was noticeable. The concentration of EDCs in Yueyang section (downstream) was the highest in winter, while the concentration in Yongzhou (upstream) section was the lowest in spring. The concentration of EDCs in the Xiangjiang River was significantly correlated with the levels of the total organic carbon, water temperature, and dissolved oxygen. Source analysis indicated that untreated sewage was the major source of EDCs. Furthermore, the potential risks of EDCs in the surface water to aquatic organisms were assessed with the risk quotient method (European Commission, 2003), and the results indicated the highest ecological risk of 17ß-estradiol in the Xiangjiang River.


Subject(s)
Endocrine Disruptors/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Androgens/analysis , Benzhydryl Compounds/analysis , Carbon/analysis , China , Environmental Monitoring , Estrogens/analysis , Estrone/analysis , Oxygen/analysis , Phenols/analysis , Progesterone/analysis , Risk Assessment , Seasons , Sewage/analysis
11.
Environ Pollut ; 244: 462-468, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30366293

ABSTRACT

Increasing attention has been devoted to the adverse effects of endocrine disrupting chemicals (EDCs) on aquatic environments, such as water, sediment and sludge. To date, few studies have investigated the bio-accumulative characteristics of EDCs in different tissues of diverse wild freshwater fish species and their combined impacts on human health. Five EDCs were investigated in the muscle, liver, gill and, especially, gonad of three fish species collected from the Xiangjiang River, southern China. Carnivorous Siniperca Chuatsi or omnivorous Cyprinus Carpio accumulated higher contents of bisphenol A (BPA) and estrone than herbivorous Parabramis Pekinensis in muscle. Furthermore, 4-n-nonylphenol and estrone were found at higher levels and more frequently in the liver, implying that the liver played an important role in basic metabolism for accumulation, biotransformation and excretion of EDCs. Highest concentrations of BPA found in the gonad revealed that the BPA may pose a serious threat to the reproductive system of aquatic organisms. The mean liver/muscle concentration ratios of 4-n-nonylphenol, BPA, estrone and 17α-ethynyl estradiol confirmed the prolonged exposure of the fish to these EDCs. In addition, the relationships between the fish sizes and the EDC concentrations analyzed by Pearson correlation analysis implied that the bioaccumulation of diethylstilbestrol and BPA increased with the growth of Parabramis Pekinensis, and there was a balance between the uptake rate and elimination rate of EDCs in Siniperca Chuatsi and Cyprinus Carpio. Most importantly, the cumulative impacts of combined EDCs on human health by fish consumption were evaluated. The total estradiol equivalent quantity of estrogens was higher than that of phenols. Also, based on the results of the Monte-Carlo simulation, the 95th percentile values of the total estimated daily intakes from consuming the three freshwater fish species from the Xiangjiang River were higher than the acceptable daily intake.


Subject(s)
Carps/metabolism , Endocrine Disruptors/analysis , Environmental Monitoring/methods , Seafood/analysis , Water Pollutants, Chemical/analysis , Animals , Benzhydryl Compounds/analysis , China , Estrogens/analysis , Estrone/analysis , Ethinyl Estradiol/analysis , Fresh Water , Gills/chemistry , Gonads/chemistry , Humans , Liver/chemistry , Muscles/chemistry , Phenols/analysis , Risk Assessment , Rivers/chemistry
12.
Environ Sci Pollut Res Int ; 25(27): 27524-27534, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30051289

ABSTRACT

The Xiangjiang River is the mother river of the Hunan Province; also, it is a stream receiving effluents from wastewater treatment plants and even sewage, providing raw water for drinking water and habitat for various kinds of aquatic organisms. Thus, the occurrence and distribution of personal care products (PCPs) in the Xiangjiang River, including seven preservatives, four anticorrosion agents, two antimicrobials, and six UV filters, were detected to evaluate their environmental risk. Of 13 detected PCPs, methyl paraben, propyl paraben, 1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, triclosan, and triclocarban were detected with a high frequency (81.4-100%), and their concentrations were up to 3173.9, 1040.4, 520.5, 15.6, 20.0, and 13.3 ng/L, respectively. Seasonal and spatial differences of the PCP distributions were observed with p < 0.05. Compared with other 37 rivers around the world, the overall pollution level of the Xiangjiang River was moderate, characterized with higher preservatives, lower anticorrosion agents and UV filters in concentration. The risk assessment revealed that methyl paraben, propyl paraben, 2-hydroxy-4-methoxybenzophenone, triclosan, and triclocarban were likely to have ecotoxicological effects on the fish, daphnias, and algae.


Subject(s)
Aquatic Organisms/drug effects , Cosmetics/analysis , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , China , Cosmetics/toxicity , Risk Assessment , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/toxicity
13.
Sci Total Environ ; 636: 975-984, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29729515

ABSTRACT

The occurrence of 36 pharmaceutically active compounds in surface water of the Xiangjiang River was investigated in two seasons (n = 38). Twenty-five of these compounds were detected, with cefotaxime (maximum concentration 830 ng L-1) the most abundant compound followed by amoxicillin (maximum concentration 710 ng L-1). The spatiotemporal distribution was observed; indicating that pollution hotspots were mostly located in economically developed and densely populated regions such as Changsha City. Lower concentrations were found in summer than winter, which may be attributed to the dilution effect of a flood event and higher water temperatures. The distribution of pharmaceuticals was significantly correlated with temperature and ammonia nitrogen content. A principal component analysis-multiple linear regression model estimated that domestic sewage was the main source of pharmaceuticals, although the source composition varied among different sampling sites. Risk assessment was conducted using both individual and mixture models for preliminary identification of potential hazards. Sulfamethoxazole, clarithromycin, and azithromycin posed a high risk to algae, while sulfamethoxazole, trimethoprim, and erythromycin-H2O showed a medium risk to invertebrates. Moreover, the mixture risk quotients calculated using a concentration addition model ranged from 0.31 to 9.60 in winter, and from 0.06 to 0.61 in summer, indicating a potential risk to the aquatic environment. This study provides scientific support to policy-makers to establish contaminant management priorities and enriches the global data on emerging contaminants.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Animals , China , Risk Assessment , Rivers/chemistry
14.
Food Chem ; 260: 174-182, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29699659

ABSTRACT

A new, sensitive, and rapid method based on the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) approach and air-assisted liquid-liquid microextraction (AALLME) technology was developed for the determination of 20 endocrine-disrupting compounds (EDCs) in fish by high-performance liquid chromatography-tandem mass spectrometry. The method first integrates AALLME into QuEChERS to achieve clean-up and enrichment of the EDCs in one step. A self-made glass tube was enfolded with plasticine to withstand the high centrifugal force. The established method was developed by optimization of the parameters. High linearities (R2 > 0.9924) and recoveries (78.2-118.6%) at three spiked levels (5, 10, and 20 ng g-1), and low relative standard deviation values (1.1-14.5%) and limits of detection (0.03-0.80 ng g-1) were obtained. The method comparison shows that the proposed method is superior as it involves less organic solvent usage, simple operation and high efficiency. This method was successfully applied to different fishes for analyzing EDCs.


Subject(s)
Chromatography, High Pressure Liquid/methods , Endocrine Disruptors/analysis , Fishes , Food Contamination/analysis , Liquid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Animals , China , Fish Products/analysis , Food Analysis/methods , Limit of Detection , Liquid Phase Microextraction/instrumentation , Organic Chemicals/chemistry , Reproducibility of Results , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...