Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(21): e2302701120, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37192166

ABSTRACT

We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory of Nf = 2 massless Dirac fermions carrying fundamental gauge charges-this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice with π-flux per plaquette in the ℤ2 center of SU(2). This theory has an emergent SO(5)f global symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsion U at half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving in π ℤ2-flux. At half-filling, the low-energy theory of the Higgs sector has Nb = 2 relativistic bosons with a possible emergent SO(5)b global symmetry describing rotations between a d-wave superconductor, period-2 charge stripes, and the time-reversal breaking "d-density wave" state. We propose a conformal SU(2) gauge theory with Nf = 2 fundamental fermions, Nb = 2 fundamental bosons, and a SO(5)f×SO(5)b global symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)f and a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order and d-wave superconductivity. A similar theory applies at nonzero doping and large U, with longer-range couplings of the chargons leading to charge order with longer periods.

2.
Proc Natl Acad Sci U S A ; 117(20): 10721-10726, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32366657

ABSTRACT

We introduce a general framework to study moiré structures of two-dimensional Van der Waals magnets using continuum field theory. The formalism eliminates quasiperiodicity and allows a full understanding of magnetic structures and their excitations. In particular, we analyze in detail twisted bilayers of Néel antiferromagnets on the honeycomb lattice. A rich phase diagram with noncollinear twisted phases is obtained, and spin waves are further calculated. Direct extensions to zigzag antiferromagnets and ferromagnets are also presented. We anticipate the results and formalism demonstrated to lead to a broad range of applications to both fundamental research and experiments.

3.
Phys Rev Lett ; 120(3): 037204, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400534

ABSTRACT

We describe electron spin resonance in a quantum spin liquid with significant spin-orbit coupling. We find that the resonance directly probes spinon continuum, which makes it an efficient and informative probe of exotic excitations of the spin liquid. Specifically, we consider spinon resonance of three different spinon mean-field Hamiltonians, obtained with the help of projective symmetry group analysis, which model a putative quantum spin liquid state of the triangular rare-earth antiferromagnet YbMgGaO_{4}. The band of absorption is found to be very broad and exhibit strong van Hove singularities of single spinon spectrum as well as pronounced polarization dependence.

SELECTION OF CITATIONS
SEARCH DETAIL
...