Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 985-996, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884233

ABSTRACT

The southwestern region of China is the largest exposed karst area in the world and serves as an important ecological security barrier for the upstream of Yangtze River and Pearl River. Different from the critical zone of non-karst areas, the epikarst, formed by an interwoven network of denudation pores, is the core area of karst critical zone. Water is the most active component that participates in internal material cycle and energy flow within the critical zone. We reviewed relevant research conducted in the southwestern region from three aspects: the characte-rization of critical zone structure, the hydrological processes of soil-epikarst system, and their model simulations. We further proposed potential research hotpots. The main approach involved multi-scale and multi-method integrated observations, as well as interdisciplinary collaboration. Precisely characterizing the eco-hydrological processes of the vegetation-soil-epikarst coupling system was a new trend in the future research. This review would provide scientific reference for further studies on hydrological processes in critical zones and regional hydrological water resource management in karst areas.


Subject(s)
Ecosystem , Hydrology , China , Soil/chemistry , Water Movements , Rivers , Groundwater , Conservation of Water Resources/methods , Environmental Monitoring
2.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3184-3194, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511356

ABSTRACT

The mean transit time (MTT) is a good indicator of water cycle processes. We know little about the MTT of different water bodies within the soil-plant-atmosphere continuum (SPAC) in the subtropical monsoon region. We estimated the MTT of stratified soil water at different depths as well as the xylem water and leaf water in typical Cinnamomum camphora woodland located in Changsha City from March 2017 to October 2019. The main methods used in this study included the stable isotope technology, the linear mixed model and the sine wave fitting method. The results showed that the stable isotopes were more depleted in summer and enriched in winter for different water bodies within the SPAC. The δ2H values of soil water gradually decreased as depth increased. The δ2H values of xylem water closely resembled those of soil water, but the δ2H values of leaf water were more positive and exhibited larger variation. Results of the linear mixed model indicated that the lower MTT values of soil water and plant water occurred between June and September, while the higher values were often observed around January and from April to May. The precipitation replenishment exhibited a significant negative correlation with the MTT. The MTT of soil water generally increased with depth, although preferential flow could enhance the replenishment of deeper soil water and subsequently reduce the MTT. The mean MTT values of xylem water and leaf water were similar. Results of the sine wave fitting method showed that the young water fraction (Fyw) of soil water gradually decreased as depth increased, while the MTT of soil water gradually increased as depth increased. The Fyw and MTT of xylem water were lower and higher than those of leaf water, respectively. Both the mean MTT values of soil water based on the linear mixed model or the sine wave fitting method increased from the surface to the deeper soil layers. The former exhibited a smaller variation range and the latter showed a larger variation range. The mean MTT value of xylem water based on the linear mixed model was 2.4 days less than that of leaf water, while the MTT value of xylem water in the sine wave fitting method was 87.4 days higher than that of leaf water. These differences may be due to the parameterization of "new/young water", the uncertainty of results, and the effect of evaporative fractionation. This study contributes to a better understanding of water transport and consumption processes within the SPAC and provides valuable insights for agricultural production and water resources management in the subtropical monsoon region.


Subject(s)
Plants , Soil , Forests , Atmosphere , Water , Plant Leaves/chemistry , Oxygen Isotopes/analysis
3.
Ying Yong Sheng Tai Xue Bao ; 27(10): 3129-3136, 2016 Oct.
Article in Chinese | MEDLINE | ID: mdl-29726137

ABSTRACT

In this study, the photosynthetic light response curves were measured for Liquidambar formosana during the leaf senescence from October to December in 2014. The measurements were simulated by a photosynthetic light response model (Ye model) and the conventional non-rectangular hyperbola model, in order to understand the photosynthetic capacity of senescing leaves of L. formosana. The results showed that the light sensitivity of the net photosynthetic rate decreased gra-dually during the leaf senescence. The measured maximum net photosynthetic rate was about 2.88 µmol CO2·m-2·s-1 when the leaf color just turned yellow, and dropped to 0.95 µmol CO2·m-2·s-1 in the later stage of leaf senescence (8th December). The two photosynthetic light-response models performed well in fitting the observation data, with Ye model being slightly better. Parameters estimated from the two models, such as the maximum net photosynthetic rate, the appa-rent quantum yield, the quantum yield at the light compensation point and the dark respiration rate, all gradually decreased with time, quantitatively describing the decrease in the photosynthetic capacity during the leaf senescence for L. formosana. The senescing leaves of L. formosana maintained positive net photosynthesis rates during the whole senescence, which had positive impact on carbon assimilation in the study area.


Subject(s)
Liquidambar/physiology , Photosynthesis , Plant Leaves/physiology , Carbon , Carbon Dioxide/analysis , Models, Biological , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...