Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Bioresour Technol ; : 131091, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986883

ABSTRACT

The reuse of hydroxyapatite particles (HAPs) as a granulation activator for anammox sludge was explored to address the remaining issues of time-consuming and unstable granular structure in anammox granulation. During the granulation, nitrogen removal capacity from 2.8 to 13.7 gN/L/d was obtained within 193 days, accompanied by an enhancement in bio-activity from 0.23 to 0.52 gN/gVSS/d. HAPs and anammox microorganisms coupled well to aggregate into granules for denser biomass, higher settleability, and stronger mechanical properties, which effectively improved the biomass retention capacity and structural strength of the sludge system. A skeleton structure formed by the HAPs was characterized during the transformation of the granules, playing a crucial role in strengthening the stability of the sludge. The intermediate processes of granulation were thus clarified to propose an evolutionary pathway for anammox-HAP granules. The pre-addition of HAPs is conducive to achieving faster anammox granulation and rapid process start-up for high-strength wastewater treatment.

2.
Sci Total Environ ; 862: 160750, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36493823

ABSTRACT

The phosphorus harvest along nitrogen removal in the partial nitritation/anammox (PNA) reactor is promising for saving space and simplifying the management of mainstream wastewater treatment facilities. In this study, the phosphorus recovery from the low-temperature mainstream wastewater was explored through iron phosphate crystallization in a pilot-scale PNA reactor. With the COD-alleviated municipal wastewater as the influent, the ammonium concentration of about 50 mg/L and the phosphorus concentration ranged from 5.4 to 7.1 mg/L, under the temperature of 15 °C and the addition of external ferrous iron of 14 mg/L, the achieved nitrogen removal efficiency and the phosphorus removal efficiency were 37.6 % and 62.7 %, respectively. The good settleability of sludge indicated that the formed iron phosphate was well combined with the biomass. The quantitative analysis confirmed that the main iron phosphate in dry sludge was graftonite, and qualitative analysis confirmed that the equivalent of P2O5 content in the sludge was 5.8 %, which was suitable as fertilizer on agricultural land to realize the direct recycle of discharged phosphorus. In all, this study proposed a pioneering scheme to realize the nitrogen removal and phosphorus cycle in human society and given a meaningful reference for further research and application.


Subject(s)
Ammonium Compounds , Wastewater , Humans , Sewage/chemistry , Temperature , Phosphorus , Anaerobic Ammonia Oxidation , Crystallization , Bioreactors , Oxidation-Reduction , Ammonium Compounds/chemistry , Nitrogen , Phosphates , Iron , Denitrification
3.
Water Res ; 225: 119194, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36215833

ABSTRACT

Partial nitritation-anammox (PN/A) is a promising deammonification process to develop energy-neutral wastewater treatment plants. However, the mainstream application of PN/A still faces the challenges of low nitrogen concentration and low temperatures, and has not been studied under a realistic condition of large-scale reactor (kiloliter level), real municipal wastewater (MWW) and seasonal temperatures. In this research, a pilot-scale one-stage PN/A, with integrated fixed-film activated sludge (IFAS) configuration, was operated to treat the real MWW pretreated by anaerobic membrane bioreactor. The removal efficiency of total nitrogen (TN) was 79.4%, 75.7% and 65.9% at 25, 20 and 15°C, corresponding to the effluent TN of 7.3, 9.7 and 12.0 mg/L, respectively. The suppression of ammonium-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) occurred at lower temperatures, and the significant decrease in AOB treatment capacity was the reason for the poorer nitrogen removal at 15°C. Biomass retention and microbial segregation were successfully achieved. Specifically, Candidatus_Brocadia and Candidatus_Kuenenia were main AnAOB genera and mainly enriched on carriers, Nitrosomonas and uncultured f_Chitinophagaceae were main AOB genera and mainly distributed in suspended sludge and retained by sedimentation tank. Moreover, nitrite-oxidizing bacteria (NOB) were sufficiently suppressed by intermittent aeration and low dissolved oxygen, the presence of heterotrophic bacteria upgraded the PN/A to a simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) system, which improved the overall removal of TN and COD. The results of this investigation clearly evidence the strong feasibility of PN/A as a mainstream nitrogen removal process in temperate climates.


Subject(s)
Ammonium Compounds , Sewage , Wastewater , Nitrites , Biomass , Temperature , Anaerobic Ammonia Oxidation , Seasons , Bioreactors/microbiology , Nitrogen , Bacteria , Oxidation-Reduction , Oxygen
4.
Bioresour Technol ; 360: 127542, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35777641

ABSTRACT

The seasonal and annual energy efficiency of mainstream anaerobic membrane bioreactor (AnMBR) was first assessed in an onsite pilot plant (15 m3/d) and then estimated in a scaled-up plant (10,000 m3/d) in temperate climates (15-25 °C). It was found that the annual net electricity demand was 0.100 and 0.090 kWh/m3, and the annual net energy (electricity + heat) demand was -0.158 and -0.309 kWh/m3 under the dissolved methane recovery condition and the non-recovery condition, respectively, demonstrated that the application of mainstream AnMBR in temperate climates is electricity saving and energy positive. The energy efficiency of the AnMBR decreased with temperature drop due to the reduction of methane production, and the increase in biogas sparging to mitigate membrane fouling. Since approximately 26.7%-39.7% of input COD remained in sludge, attention should be paid to recovering this potential energy to improve the overall energy performance of the mainstream AnMBR plants in future.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Bioreactors , Conservation of Energy Resources , Membranes, Artificial , Methane , Seasons , Sewage , Wastewater/analysis
5.
Water Res ; 221: 118751, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35728499

ABSTRACT

A lengthy start-up period has been one of the key obstacles limiting the application of the anammox process. In this investigation, a nitrification-denitrification sludge was used to start-up the anammox EGSB process. The transformation process from nitrification-denitrification sludge to anammox granule sludge was explored through the aspects of nitrogen removal performance, granule properties, microbial community structure, and evolution route. A successful start-up of the anammox process was achieved after 94 days of reactor operation. The highest nitrogen removal rate (NRR) obtained was 7.25±0.16 gN/L/d at a nitrogen loading rate (NLR) of 8.0 gN/L/d, and the corresponding nitrogen removal efficiency was a high 90.61±1.99%. The results of the microbial analysis revealed significant changes in anammox bacteria, nitrifying bacteria, and denitrifying bacteria in the sludge. Notably, the anammox bacteria abundance increased from 2.5% to 29.0% during the operation, and Candidatus Kuenenia and Candidatus Brocadia were the dominant genera. Distinct-different successions on Candidatus Brocadia and Candidatus Kuenenia were also observed over the long-term period. In addition, the settling performance, anammox activity and biomass retention capacity of the granules were significantly enhanced during this process, and the corresponding granule evolution route was also proposed. The results in this study indicate the feasibility of using available seed sludge source for the fast-transformation of anammox granules, it is beneficial to the large-scale application of anammox process and the utilization of excess sludge.


Subject(s)
Microbiota , Nitrification , Anaerobic Ammonia Oxidation , Anaerobiosis , Bacteria , Bioreactors/microbiology , Denitrification , Nitrogen , Oxidation-Reduction , Sewage/microbiology
6.
Bioresour Technol ; 354: 127167, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35436540

ABSTRACT

A 5,000-L anaerobic membrane bioreactor (AnMBR) fed with actual municipal wastewater was employed to study the impact of temperature drops on methanogenic performance and membrane fouling. With temperature dropped from 25 °C to 15 °C, the methane yield decreased from 0.244 to 0.205 NL-CH4/g-CODremoval and the dissolved methane increased from 29% to 43%, resulted in the methanogenic performance reduced by 25%. The membrane rejection offset the deteriorated anaerobic digestion at low temperatures and ensured the stable COD removal efficiency of 84.5%-90.0%. The synergistic effects of the increased microbial products and viscosity and the residual inorganic foulants aggravated the membrane fouling at lower temperatures. As the organic fouling was easily removed by NaClO, the inorganics related to the elements of S, Ca and Fe were the stubborn membrane foulants and required the enhanced acid membrane cleaning. These findings obtained under the quasi-practical condition are expected to promote the practical applications of mainstream AnMBR.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Bioreactors , Membranes, Artificial , Methane , Temperature
7.
Bioresour Technol ; 351: 127062, 2022 May.
Article in English | MEDLINE | ID: mdl-35351558

ABSTRACT

At ambient temperature condition, the one-stage partial nitritation/anammox (PNA) process has been successfully adopted to treat the filtrate from the mainstream anaerobic membrane bioreactor (AnMBR). However, there is no investigation of the performance of this process at low-temperature condition. In this study, the nitrogen removal performance of a pilot-scale PNA reactor at the temperature of 15 °C for treating the filtrate of a mainstream AnMBR was investigated. The nitrogen removal rate of 0.09 kg/m3/d and the nitrogen removal efficiency of 37.6% were achieved. The anammox reaction was the rate-limiting step of the nitrogen removal. Nitrogen removal was attributed in part to denitrification activity. The microbial community analysis confirmed that the main functional bacteria comprised of genus Nitrosomonas and genus Kuenenia. In sum, this research demonstrated the applicability of PNA process for mainstream AnMBR filtrate treatment to some extent and enriched the related knowledge.


Subject(s)
Ammonium Compounds , Sewage , Anaerobic Ammonia Oxidation , Anaerobiosis , Bioreactors/microbiology , Denitrification , Nitrogen , Oxidation-Reduction , Wastewater
8.
Bioresour Technol ; 349: 126864, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183723

ABSTRACT

A pilot-scale anaerobic membrane bioreactor (AnMBR) integrated with a one-stage partial nitritation-anammox (PN/A) reactor was operated for the treatment of municipal wastewater (MWW) at seasonal temperatures of 15-25 °C. The removal efficiencies of COD and total nitrogen (TN) were always > 90% and > 75% respectively. The methanogenesis and PN/A were identified as the primary removal pathways of COD and TN, respectively, and were suppressed at low temperatures. With the temperature dropped from 25 °C to 20 °C to 15 °C, the methane-accounted COD decreased from 63.1% to 59.6% to 48.4%, and the PN/A-accounted TN decreased from 58.1% to 51.7% to 45.3%. The AnMBR and PN/A mutually complement each other in this combined process, as the AnMBR removed 8.5%-16.1% of TN by sludge entrainment and the PN/A reactor removed 2.6%-3.4% of COD by denitrification and aerobic oxidation. These results highlighted the strong feasibility of applying the AnMBR-PN/A process to the treatment of MWW in temperate climate.


Subject(s)
Ammonium Compounds , Wastewater , Ammonium Compounds/metabolism , Anaerobic Ammonia Oxidation , Anaerobiosis , Bioreactors , Denitrification , Nitrogen , Oxidation-Reduction , Seasons , Sewage , Temperature
9.
Bioresour Technol ; 348: 126740, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35074463

ABSTRACT

Nitrogen removal from wastewater by the partial nitritation/anammox (PNA) technology is promising from both economic and environmental perspectives. However, this technology has not been popularized in the mainstream because of low biomass retention and the growth of the nitrite oxidizing bacteria. In this study, a one-stage PNA process with hydroxyapatite (HAP)-enhanced granules was used to treat effluent from a mainstream anaerobic membrane bioreactor. The HAP-enhanced reactor allowed an enriched high biomass of 6.9 ± 0.2 g/L at a low hydraulic retention time of 2 h. A nitrogen removal efficiency of 80 ± 6.0 %, a nitrogen removal rate of 0.36 ± 0.05 kg/m3/d and a COD removal efficiency of 54 ± 15 % were achieved stably, leading to a low total nitrogen concentration of 8.5 ± 2.7 mg/L and a low COD concentration of 19.7 ± 5.9 mg/L in the effluent. Anammox bacteria of Candidatus Kuenenia stuttgartiensis and ammonium oxidizing bacteria of Nitrosomonas were found to be the two most predominant bacteria.


Subject(s)
Ammonium Compounds , Wastewater , Anaerobic Ammonia Oxidation , Anaerobiosis , Bioreactors/microbiology , Denitrification , Durapatite , Nitrogen , Oxidation-Reduction , Sewage
10.
Sci Total Environ ; 807(Pt 3): 151063, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34673073

ABSTRACT

Recently, it was reported that for synthetic low-strength wastewater, the excellent nitrogen removal rate (NRR) accompanied with phosphorus removal could be achieved through the partial nitritation/anammox (PNA)-hydroxyapatite (HAP) process. Thus, this research further investigated the performance of the pilot-scale PNA-HAP process treating the effluent of an anaerobic membrane bioreactor (AnMBR) fed with the actual municipal wastewater. The results showed that with the hydraulic retention time of 4.0 h, the influent ammonium concentration ranging from 36.0 to 41.0 mg/L, and the BOD5 ranging from 6.3 to 12.7 mg/L, the average NRR and the nitrogen removal efficiency was 0.13 kg/m3/d and 63.38%, respectively. The specific activity test of sludge confirmed that the PNA process was the main nitrogen metabolism pathway. The effluent nitrate and the BOD5 were almost zero, indicating the existence of denitrification activity in reactor. Given that the oxygenation condition, the heterotrophic organic matter oxidization activity also occurred in reactor. The sludge analysis confirmed the phosphate formation in sludge. Thus, in the reactor, four kinds of biological activities and chemical crystallization occurred harmoniously in sludge. From the mixed liquid volatile suspended solid of 2.4 g/L and the low distribution range of granule size, it was obvious that the sludge had a high dispersity. Based on the well settling ability of sludge during the operation, it was inferred that there was a close bond between biomass and HAP in sludge, which was helpful to enhance the settleability of sludge granule. Besides, the phosphorus-containing sludge was suitable as the fertilizer. In all, this study demonstrated that the PNA-HAP process is an ideal alternative treating the effluent of the AnMBR process in the municipal wastewater treatment.


Subject(s)
Durapatite , Wastewater , Anaerobic Ammonia Oxidation , Anaerobiosis , Bioreactors
11.
Water Res ; 207: 117783, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34768103

ABSTRACT

In this pilot-scale study, an innovative mainstream treatment process that couples the anaerobic membrane reactor (AnMBR) with a one-stage PN/A system was proposed for advancing the concept of carbon neutrality in the municipal wastewater treatment plant. This work demonstrates the start-up procedure of a pilot-scale one-stage PN/A system for mainstream treatment. The 255-day start-up of the one-stage PN/A system involved the cultivation of ammonium-oxidizing bacteria (AOB) from the activated sludge, suppression of nitrite-oxidizing bacteria (NOB), investigation of in-situ growth kinetics of anammox bacteria (AnAOB), and the 50-day operation of the pilot-scale AnMBR-PN/A process for natural mainstream treatment. It is verified in the pilot-scale system for the first time that the in-situ free ammonia (FA) and free nitrous acid (FNA) exposure could effectively eliminate the Nitrospira (the NOB genus) while retaining the Nitosonomas (the AOB genus) community in the suspended sludge. NOB community rebounding was not detected even at the mainstream conditions with low nitrogen concentrations (Influent ammonium concentration=38±6 mg-NH4+-N/L) by intermittent aeration to control the system dissolved oxygen (DO) below 0.5 mg/L. The results of the mainstream treatment showed that the average effluent total nitrogen (TN) in the coupled process was generally lower than 10 mg-N/L, which meets the discharge limits of most prefectures in Japan. The investigated results of the in-situ anammox bacteria (AnAOB) growth kinetics suggested that the promoted start-up strategy of taking advantage of the warm months with higher mainstream temperature to achieve the rapid in-situ growth of the AnAOB is applicable in the investigated regions. From the perspective of the removal performance of the TN and organic substance, the AnMBR-PN/A process has great potential as the layouts of the carbon-neutral mainstream wastewater treatment plants.


Subject(s)
Ammonium Compounds , Nitrites , Anaerobic Ammonia Oxidation , Anaerobiosis , Bacteria , Bioreactors , Kinetics , Nitrogen , Oxidation-Reduction , Sewage , Wastewater
12.
Bioresour Technol ; 341: 125840, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34469821

ABSTRACT

A novel municipal wastewater treatment process towards energy neutrality and reduced carbon emissions was established by combining a submerged anaerobic membrane bioreactor (SAnMBR) with a one-stage partial nitritation-anammox (PN/A), and was demonstrated at pilot-scale at 25 °C. The overall COD and BOD5 removal efficiencies were 95.1% and 96.4%, respectively, with 20.3 mg L-1 COD and 5.2 mg L-1 BOD5 remaining in the final effluent. The total nitrogen (TN) removal efficiency was 81.7%, resulting 7.3 mg L-1 TN was discharged from the system. The biogas yield was 0.222 NL g-1 COD removed with a methane content range of 78-81%. Approximately 90% of influent COD was removed in the SAnMBR, and 70% of influent nitrogen was removed in the PN/A. The denitrification which occurred in the PN/A enhanced overall COD and nitrogen removal. The successful operation of this pilot-scale plant indicates the SAnMBR-PN/A process is suitable for treating real municipal wastewater.


Subject(s)
Nitrogen , Wastewater , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Denitrification , Oxidation-Reduction
13.
Bioresour Technol ; 339: 125551, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34298245

ABSTRACT

The potential of bio-energy recovery from real municipal wastewater was investigated using a one-stage pilot-scale submerged anaerobic membrane bioreactor (AnMBR) for a range of HRTs from 24 h to 6 h at ambient temperature around 25 °C. This pilot-scale AnMBR demonstrated a high COD removal efficiency of over 90% during an operation of 217 days for municipal wastewater treatment. The energy balance of the AnMBR was calculated from both theoretical and practical aspects. The theoretical net energy potential was calculated as 0.174 kWh/m3 by applying operational data to empirical equations, obtaining a bio-energy recovery efficiency of 69.4%. The practical net energy potential was estimated as -0.014 kWh/m3 using the powers of engines applied in a full-scale wastewater treatment plant. This is considerably lower than that of the conventional activated sludge process. These results are evidence of the potential of the AnMBR and feasibility in the treatment of municipal wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Bioreactors , Membranes, Artificial , Sewage , Temperature
14.
Bioresour Technol ; 326: 124781, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33540215

ABSTRACT

Poor processing stability has been cited as the fatal shortcoming of the up-flow anaerobic sludge blanket (UASB) reactor treating starch wastewater (SW). In this study, the SW treatment performance in a one-stage UASB reactor and a pre-acidification equipped UASB process were evaluated together with the microbial dynamics. The results revealed that the pre-acidification provided improvements in terms of the substrate utilization diversity and the stability of the microbial community structure on the UASB reactor. Anaerolineaceae/Methanosaeta was the core functional microbiota in the pre-acidification equipped UASB reactor, indicated the superior abilities on the acetogenic methanogenesis of granules. The genus of Methanobacterium, a hydrogenotrophic methanogen was dominant in the archaeal community in the one-stage UASB reactor. The granules performed very strong hydrogen affinity in methane production, a small amount of propionate was detected in the effluent. These were abnormal, which suggested the high hydrogen turn-over rate in the one-stage UASB reactor.


Subject(s)
Microbiota , Sewage , Anaerobiosis , Bioreactors , Hydrogen-Ion Concentration , Methane , Starch , Waste Disposal, Fluid , Wastewater
15.
Sci Total Environ ; 759: 143526, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33288248

ABSTRACT

Sludge yield and suspended solid are important factors concerned in the anaerobic treatment of municipal wastewater. In this study, a large pilot-scale anaerobic membrane bioreactor (AnMBR) was constructed for effectively treating real municipal wastewater at an ambient temperature of 25 °C. The sludge yield and the degradation of influent suspended solids were evaluated during the long-term operation of the AnMBR. This reactor with 5.0 m3 effective volume is the largest one-stage submerged AnMBR that has ever been used to treat municipal wastewater. During the long-term operation of 217 days, this AnMBR obtained excellent COD and BOD5 removal efficiency over 90%. Stable biogas production was also successfully obtained from treating municipal wastewater. The sludge yield of the AnMBR was approximately 0.19-0.26 g MLSS g-1 COD removed for the treatment of real municipal wastewater. The shortest SRT of the AnMBR was calculated as 29 days for an HRT of 6 h at an empirical MLSS of 10 g L-1. While the influent suspended solid (SS) contained in the municipal wastewater was completely removed by the AnMBR, only 57%-66% of the influent SS was degraded. The rest of influent SS was directly converted to MLSS instead of being degraded. The AnMBR maintained a stable membrane filtration using a hollow-fiber membrane with a total area of 72 m2, realizing a flux of 2.75-17.83 LMH, and the mean transmembrane pressure (TMP) was 0.9-23.5 kPa. An online chemical backwash cleaning system helped to lower the TMP timely using sodium hypochlorite and citric acid when the TMP increased rapidly and reached the rated limit of membrane. This is the first report on demonstrating the successful operation and detailed performance of a large pilot-scale AnMBR applied to the treatment of real municipal wastewater.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors , Membranes, Artificial , Waste Disposal, Fluid
16.
Bioresour Technol ; 319: 124123, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32971330

ABSTRACT

The aim of this work was to demonstrate the operation of a large pilot-scale submerged anaerobic membrane bioreactor (5.0 m3) for biogas production from municipal wastewater at ambient temperature of 25 °C. To the best of our knowledge, this is the largest one-stage submerged AnMBR that has ever been reported. This AnMBR realized a hydraulic retention time (HRT) of 6 h and a treatment capacity of 20 m3 d-1, obtaining excellent effluent quality with COD removal efficiency over 90% and BOD5 removal over 95%. The biogas yield of the AnMBR was 0.25-0.27 L g-1 removed COD and 0.09-0.10 L L-1 raw wastewater. The methane content of the biogas was at the range of 75%-81%. The COD and nitrogen mass balance were also identified based on long-term operation. The hollow-fiber membrane module realized a flux of 2.75-17.83 LMH. An online backwash chemical cleaning system helped to lower the transmembrane pressure timely.


Subject(s)
Biofuels , Wastewater , Anaerobiosis , Bioreactors , Membranes, Artificial , Methane , Waste Disposal, Fluid
17.
Biosens Bioelectron ; 142: 111578, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31422223

ABSTRACT

The sensitive and accurate detection of cardiac troponin I (cTnI) is critical for myocardial infarction diagnosis. In this work, a dual-aptamer-based electrochemical (EC) biosensor was designed for cTnI detection based on the DNA nanotetrahedron (NTH) capture probes and multifunctional hybrid nanoprobes. First, the NTH-based Tro4 aptamer probes were anchored on a screen printed gold electrode (SPGE) surface through the Au-S bond, providing an enhanced spatial dimension and accessibility for capturing cTnI. Then, the hybrid nanoprobes were fabricated by using magnetic Fe3O4 nanoparticles as nanocarriers to load a large amount of cTnI-specific Tro6 aptamer, natural horseradish peroxidase (HRP), HRP-mimicking Au@Pt nanozymes and G-quadruplex/hemin DNAzyme. This signaling nanoprobes are capable of specifically recognizing the target cTnI based on the Tro6 aptamer and amplifying the signals to improve the detection sensitivity via enzymatic processes. We found the remarkable enhanced effect of EC signal to be attributed to the co-catalysis effect of hybrid nanozymes, HRP and DNAzyme. The target cTnI was sandwiched between the two types of aptamers (Tro4 and Tro6) on the electrode interface. Finally, this EC aptasensing platform exhibited great analytical performance with a wide dynamic range of 0.01-100 ng mL-1 and a low detection limit of 7.5 pg mL-1 for cTnI. The high selectivity, sensitivity and reliability of EC aptasensor can provide great potential in the clinic disease diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Immobilized Nucleic Acids/chemistry , Troponin I/blood , Catalysis , DNA Probes/chemistry , DNA, Catalytic/chemistry , Electrochemical Techniques/methods , G-Quadruplexes , Gold/chemistry , Hemin/chemistry , Horseradish Peroxidase/chemistry , Humans , Limit of Detection , Platinum/chemistry , Reproducibility of Results , Troponin I/analysis
18.
Mikrochim Acta ; 186(6): 374, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31123904

ABSTRACT

An ultrasensitive voltammetric aptasensor was constructed to analyze cardiac troponin I (cTnI). It is based on DNA nanotetrahedron (NTH) linked dual-aptamer (dAPT) and magnetic metal organic frameworks (mMOFs) of type Fe3O4@UiO-66. Firstly, the DNA NTH linked dAPT (Tro4 and Tro6) were immobilized on a gold electrode for improving the capture efficiency of cTnI. The novel mMOFs Fe3O4@UiO-66 was then decorated by Au@Pt nanoparticles (Au@PtNPs), horseradish peroxidase (HRP), G-quadruplex/hemin (GQH) DNAzyme, and two types of aptamers to form signaling nanoprobes. In the presence of cTnI, an aptamer-protein-nanoprobe sandwich-type structure is formed. Afterward, the nanoprobes including enzyme, GQH DNAzyme and Fe3O4@UiO-66/Au@PtNP were utilized to catalyze the oxidation of hydroquinone by hydrogen peroxide for the electrochemical signals amplification, typically at a working potential of -0.1 V (vs. Ag/AgCl). The voltammetric signal increases linearly in the 0.01 to 100 ng·mL-1 cTnI concentration range, and the detection limit is 5.7 pg·mL-1. Graphical abstract An ultrasensitive voltammetric aptasensor was constructed to analyze cardiac troponin I (cTnI) based on DNA nanotetrahedron linked dual-aptamer and magnetic metal organic frameworks of type Fe3O4@UiO-66. The results indicated the aptasensor has a wide linear response range (0.01 to 100 ng/mL) and low detection limit (5.74 pg/mL) for cTnI. GE: gold electrode; MCH: 6-Mmercapto-1-hexanol; HRP: horseradish peroxidase; HQ: hydroquinone; BQ: benzoquinone.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA, Catalytic/chemistry , Electrochemical Techniques/methods , Metal-Organic Frameworks/chemistry , Troponin I/blood , Armoracia/enzymology , Base Sequence , DNA, Catalytic/genetics , G-Quadruplexes , Gold/chemistry , Hemin/chemistry , Horseradish Peroxidase/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydroquinones/chemistry , Limit of Detection , Magnetite Nanoparticles/chemistry , Oxidation-Reduction , Reproducibility of Results , Silver/chemistry
19.
Biosens Bioelectron ; 134: 49-56, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30954926

ABSTRACT

The accurate detection of biomarkers for acute myocardial infarction (AMI) plays an important role in clinical diagnosis and management process. In this work, we developed an electrochemical biosensor by using magnetic metal organic framework (MMOF) nanocatalysts and DNA nanotetrahedron (NTH) based dual-aptamer probes for nonenzymatic detection of cardiac troponin I (cTnI), a gold standard biomarker for the early diagnosis of AMI. Firstly, the NTH-assisted dual-aptamer (Tro4 and Tro6) capture probes were immobilized on the screen-printed gold electrode (SPGE) for the highly enhanced capture the target cTnI with steady support and optimized interface density. Then, the MMOF Fe3O4@UiO-66 nanozymes were decorated by bimetallic Cu@Au nanoparticles and two kinds of aptamer. This fabricated nonenzymatic nanoprobe1 (NP1) can be applied for recognizing the cTnI specifically and amplifying the current signal by catalyzing the oxidation of hydroquinone (HQ) to benzoquinone (BQ) with H2O2. The target proteins were captured to fabricate a supersandwich-like structure on a SPGE interface. Furthermore, the nanoprobe2 (NP2) of Cu@Au nanozymes labeled with dual-complementary DNA (cDNA) to the dual-aptamer, were anchored on the NP1 through DNA hybridization, leading to the formation of cluster-based nanoprobes for further enhancing detection sensitivity. Finally, this enzyme-free electrochemical aptasensor exhibited great analytical performance with a dynamic range of 0.05-100 ng/mL, a low detection limit of 16 pg/mL, high selectivity and good repeatability. The fabricated aptasensor has great potential development in the field of clinic disease diagnostics for AMI.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Magnets/chemistry , Metal-Organic Frameworks/chemistry , Troponin I/blood , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Humans , Limit of Detection , Nucleic Acid Conformation
20.
Medicine (Baltimore) ; 96(33): e7780, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28816962

ABSTRACT

Relationships between the capsule endoscopy Lewis score (LS) and clinical disease activity indices and C-reactive protein (CRP) are controversial in adult patients with Crohn's disease (CD). Also, data on pediatric patients are relatively less. However, correlation between LS and small bowel transit time (SBTT) remains investigational. The aim of the present study was to explore the correlations between LS and clinical disease activity indices, CRP, SBTT in pediatric, and adult patients with small bowel CD.Retrospective, single-center study on consecutive inpatients with established small bowel CD was conducted. The clinical disease activity index was determined using the abbreviated Pediatric Crohn's Disease Activity Index (aPCDAI) in patients aged <18 years and the Harvey-Bradshaw Simple Index (HBI) in adults. Spearman's rank correlation coefficient was used to assess the correlations of LS with aPCDAI, HBI, CRP, and SBTT, respectively.150 patients were enrolled (30 children and adolescents). In pediatric patients, correlations between LS and aPCDAI, CRP were moderate (r1 = 0.413; r2 = 0.379; P1 = .023; P2 = .044). There was no correlation between LS and SBTT (r = -0.029; P = .88). In adults, weak correlations were found between LS and HBI, SBTT (r1 = 0.213; r2 = 0.237; P1 = .019; P2 = .009). Correlation between LS and CRP was moderate (r = 0.326; P < .001). Strong correlations were found between CRP and HBI, aPCDAI (r1 = 0.522; r2 = 0.650; P < .001). The follow-up patients were all in clinical remission after treatment within 4 months, whereas only a minority reached mucosal healing. HBI, aPCDAI, CRP, and LS in all patients were reduced after treatment, whereas difference in CRP in pediatric patients and difference in LS in adults between baseline and follow-up were not found to be statistically significant. Also, the average SBTT at baseline was not found to be different from that at follow-up in all patients.The role of capsule endoscopy should be emphasized both in pediatric and adult patients with small bowel CD. Furthermore, the small bowel transit time may not be affected by the grade of small intestinal inflammation.


Subject(s)
Capsule Endoscopy/methods , Crohn Disease/pathology , Gastrointestinal Transit , Severity of Illness Index , Adolescent , Adult , Biomarkers , C-Reactive Protein/analysis , Child , China , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...