Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823923

ABSTRACT

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Subject(s)
Camptothecin , Cellulose , Hydrogels , Molecular Imprinting , Solid Phase Extraction , Camptothecin/chemistry , Camptothecin/isolation & purification , Cellulose/chemistry , Adsorption , Molecular Imprinting/methods , Hydrogels/chemistry , Solid Phase Extraction/methods , Camptotheca/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Fruit/chemistry
2.
J Fluoresc ; 34(2): 713-721, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37347423

ABSTRACT

A general egg white gel-sol strategy for fabrication of highly fluorescent Au, Ag, Cu, and Pt nanoclusters (NCs) and the first example of using Au NCs for assay of nuclease activity and inhibition were described. The Au NCs enabled bright red fluorescence, and the other Ag, Cu, and Pt NCs have highly blue emission. The red-emitting Au NCs were further applied in assay of S1 nuclease activity and inhibition. Free hemin efficiently quenches the emission of Au NCs by photoinduced electron transfer due to the formation of Au NCs-hemin conjugates. However, G-quadruplex/hemin exerts negligible effect on its fluorescence due to no Au NCs-hemin conjugate formed. There are stronger electrostatic repulsion effects between both negatively charged G-quadruplex and Au NCs. Therefore, a novel G-quadruplex/hemin-based Au NCs fluorescent sensor for S1 nuclease was designed. A known G-rich oligonucleotide (ODN) serves as not only substrate for S1 nuclease but also for the construction of G-quadruplex/hemin. The G-rich ODN is hydrolyzed into fragments by S1 nuclease resulting in no G-quadruplex/hemin formation. Therefore, the free hemin quenches Au NCs fluorescence remarkably and the assay of S1 nuclease activity and inhibition has accomplished. Both the fluorescent NCs syntheses and the detection of S1 nuclease are facile and efficient.


Subject(s)
Gold , Metal Nanoparticles , Silver , Hemin , Electron Transport , Fluorescent Dyes
3.
Int. microbiol ; 26(2): 327-341, May. 2023. ilus, graf
Article in English | IBECS | ID: ibc-220225

ABSTRACT

Background: Staphylococcus arlettae is a rarely reported coagulase-negative staphylococcus (CoNS) isolated from infected humans and livestock. Observing phage-bacteria interaction could improve the understanding of bacterial pathogenetic mechanisms, providing foundational evidence for phage therapy or phage detection. Herein, we aimed to characterise and annotate a novel bacteriophage, vB_SarS_BM31 (BM31), specific to S. arlettae. This bacteriophage was isolated from a milk sample associated with bovine mastitis and collected in the Sichuan Province, China. Results: The BM31 genome comprised a linear double-stranded DNA of 42,271 base pair in length with a G + C content of 34.59%. A total of 65 open reading frames (ORFs) were assembled from phage DNA, of which 29 were functionally annotated. These functional genes were divided into four modules: the structural, DNA packing and replication, lysis, and lysogeny modules. Holin (ORF25), lysin (ORF26), and integrase (ORF28) were located closely in the entire BM31 genome and were important for lyse or lysogeny cycle of BM31. The phage was identified as a temperate phage according to whole genome analysis and life cycle assay, with basic biological characteristics such as small burst size, short latency period, and narrow host range, consistent with the characteristics of the family Siphoviridae, subcluster B14 of the Staphylococcus bacteriophage. Conclusions: The present isolation and characterisation of BM31 contributes to the Staphylococcus bacteriophage database and provides a theoretical foundation for its potential applications. To the best of our knowledge, BM31 is the only shared and completely reported phage against S. arlettae in the entire public database.(AU)


Subject(s)
Humans , Lysogeny , 34726 , Integrases , Mastitis , Staphylococcus , Genome
4.
In Vitro Cell Dev Biol Anim ; 59(4): 241-255, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37099179

ABSTRACT

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.


Subject(s)
Adenine , Gene Editing , Animals , Swine , Exons/genetics , Mutation , Gene Knockout Techniques
5.
Colloids Surf B Biointerfaces ; 222: 113067, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36469979

ABSTRACT

In this study, a switchable temperature-responsive ionic liquid-based surfactant-free microemulsion (TRIL-SFME) for extraction and in-situ separation of hydrophilic and lipophilic compounds from Camptotheca acuminata was firstly developed and systematically characterized. This TRIL-SFME was obtained using 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]), 1,2-propanediol and H2O. The prepared TRIL-SFME presented low viscosity and rapid response to temperature. Firstly, the effect of temperatures on TRIL-SFME phase behavior was studied followed by determination of effect of liquid/solid ratio and extraction time on the extraction yields of the targeted compounds. The TRIL-SFME demulsified rapidly by thermal stimulus, resulting in in-situ separation and enrichment of compounds with varying polarity. The results of present study revealed that TRIL-SFME had higher extraction yields (1.50-5.79 folds) compared to traditional solvents and individual components of TRIL-SFME. Besides, in-situ separation and enrichment of hydrophilic compounds (phenolic acids) and lipophilic compounds (alkaloids) was accomplished in short time (within 3 min) by cooling the system to 4 â„ƒ. Furthermore, the mesoscopic behavior between TRIL-SFME and targeted compounds was simulated by dissipative particle dynamics (DPD) to explore the extraction mechanism for the first time. The results illustrated the formation of W/IL structure of TRIL-SFME and clarified solubilization mechanism of TRIL-SFME system for targeted compounds, which is related to its special "water pool" structure. This novel and switchable TRIL-SFME is an environmentally friendly and promising alternative to simultaneously extract, in-situ separate and enrich the natural active compounds with different polarity from plant matrices.


Subject(s)
Camptotheca , Ionic Liquids , Pulmonary Surfactants , Ionic Liquids/chemistry , Temperature , Surface-Active Agents , Solvents/chemistry
6.
Int Microbiol ; 26(2): 327-341, 2023 May.
Article in English | MEDLINE | ID: mdl-36336729

ABSTRACT

BACKGROUND: Staphylococcus arlettae is a rarely reported coagulase-negative staphylococcus (CoNS) isolated from infected humans and livestock. Observing phage-bacteria interaction could improve the understanding of bacterial pathogenetic mechanisms, providing foundational evidence for phage therapy or phage detection. Herein, we aimed to characterise and annotate a novel bacteriophage, vB_SarS_BM31 (BM31), specific to S. arlettae. This bacteriophage was isolated from a milk sample associated with bovine mastitis and collected in the Sichuan Province, China. RESULTS: The BM31 genome comprised a linear double-stranded DNA of 42,271 base pair in length with a G + C content of 34.59%. A total of 65 open reading frames (ORFs) were assembled from phage DNA, of which 29 were functionally annotated. These functional genes were divided into four modules: the structural, DNA packing and replication, lysis, and lysogeny modules. Holin (ORF25), lysin (ORF26), and integrase (ORF28) were located closely in the entire BM31 genome and were important for lyse or lysogeny cycle of BM31. The phage was identified as a temperate phage according to whole genome analysis and life cycle assay, with basic biological characteristics such as small burst size, short latency period, and narrow host range, consistent with the characteristics of the family Siphoviridae, subcluster B14 of the Staphylococcus bacteriophage. CONCLUSIONS: The present isolation and characterisation of BM31 contributes to the Staphylococcus bacteriophage database and provides a theoretical foundation for its potential applications. To the best of our knowledge, BM31 is the only shared and completely reported phage against S. arlettae in the entire public database.


Subject(s)
DNA, Viral , Genome, Viral , Animals , Cattle , Female , Humans , Sequence Analysis, DNA , DNA, Viral/genetics , DNA, Viral/chemistry , Staphylococcus/genetics , Staphylococcus Phages/genetics
7.
PLoS One ; 17(5): e0268262, 2022.
Article in English | MEDLINE | ID: mdl-35522690

ABSTRACT

Bovine mastitis is a common disease occurring in dairy farms and can be caused by more than 150 species of pathogenic bacteria. One of the most common causative organisms is Streptococcus agalactiae, which is also potentially harmful to humans and aquatic animals. At present, research on S. agalactiae in China is mostly concentrated in the northern region, with limited research in the southeastern and southwestern regions. In this study, a total of 313 clinical mastitis samples from large-scale dairy farms in five regions of Sichuan were collected for isolation of S. agalactiae. The epidemiological distribution of S. agalactiae was inferred by serotyping isolates with multiplex polymerase chain reaction. Susceptibility testing and drug resistance genes were detected to guide the clinical use of antibiotics. Virulence genes were also detected to deduce the pathogenicity of S. agalactiae in Sichuan Province. One hundred and five strains of S. agalactiae (33.6%) were isolated according to phenotypic features, biochemical characteristics, and 16S rRNA sequencing. Serotype multiplex polymerase chain reaction analysis showed that all isolates were of type Ia. The isolates were up to 100% sensitive to aminoglycosides (kanamycin, gentamicin, neomycin, and tobramycin), and the resistance rate to ß-lactams (penicillin, amoxicillin, ceftazidime, and piperacillin) was up to 98.1%. The TEM gene (ß-lactam-resistant) was detected in all isolates, which was in accordance with a drug-resistant phenotype. Analysis of virulence genes showed that all isolates harbored the cfb, cylE, fbsA, fbsB, hylB, and α-enolase genes and none harbored bac or lmb. These data could aid in the prevention and control of mastitis and improve our understanding of epidemiological trends in dairy cows infected with S. agalactiae in Sichuan Province.


Subject(s)
Mastitis, Bovine , Streptococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Microbial , Female , Humans , Mastitis, Bovine/epidemiology , Mastitis, Bovine/microbiology , Molecular Typing , Prevalence , RNA, Ribosomal, 16S , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus agalactiae , Virulence/genetics , Virulence Factors/genetics
8.
Front Microbiol ; 13: 854908, 2022.
Article in English | MEDLINE | ID: mdl-35387089

ABSTRACT

With the improper use of antibiotics, an increasing number of multidrug-resistant bacteria have been reported worldwide, posing challenges for disease treatment. Klebsiella pneumoniae is an important zoonotic pathogen that colonises the respiratory tract. Endolysin therapy has emerged with the development of phages. In this study, a lytic phage vB_KpnS_MK54 was isolated from the drinking water of a forest musk deer (FMD) farm in Sichuan Province. It was the first reported phage obtained from FMD. The primary biological characteristics were determined, and whole-genome sequencing analysis was performed. The phage which belongs to the family Siphoviridae is highly specific for lytic host bacteria and is moderately adaptable to different environments. Whole-genome sequencing results showed that the phage genome size was 46,218 bp. There were 80 coding DNA sequences (CDSs) in total, 32 of which had known functions. The last CDS is the phage endolysin LysG24. A new peptide-modified endolysin (LysCA) was constituted by connecting the cecropin A peptide residues with LysG24 to investigate the antibacterial activities of both LysG24 and LysCA. The results showed that the lytic profile of LysG24 and LysCA was wider than that of phage MK54. For in vitro tests, both endolysins destroyed 99% of the host bacteria within 6 h. The lysing ability and environmental adaptability of LysCA were significantly stronger than those of LysG24. For in vivo tests, LysG24 and LysCA exhibited therapeutic effects in a mouse model of pneumonia wherewith the mice were infected with K. pneumoniae (LPKP), wherein both LysG24 and LysCA can effectively reduce the pulmonary inflammatory response. The LPKP bacterial load in the treatment group was significantly lower than that in the bacterial group, among which LysCA displayed a more obvious therapeutic effect. Furthermore, the safety test showed that the endolysins had no toxic effects on mice. In general, both LysG24 and LysCA showed excellent antibacterial activity in vivo and in vitro, with high safety and strong adaptability to the environment, manifesting their latent potential as new antimicrobial agents.

9.
Front Vet Sci ; 8: 622049, 2021.
Article in English | MEDLINE | ID: mdl-34540928

ABSTRACT

Klebsiella pneumoniae is an important pathogen that can infect both humans and cattle. The widespread K. pneumoniae and its high drug resistance make it difficult to treat Klebsiella infections/diseases. In this study, a lytic K. pneumoniae bacteriophage vB_Kpn_B01 was isolated from a dairy farm trough in Sichuan Province, and its biological properties were studied, and the entire genome of vB_Kpn_B01 was sequenced. The therapeutic effects of the phage on disease-causing mice were preliminarily tested. Phages found in this study are double-stranded DNA bacterial viruses belonging to the family Siphoviridae, Sugarlandvirus. The results suggest that vB_Kpn_B01 has strong specificity and low adaptability to different adverse conditions. Meanwhile, the predicted gene products of phage vB_Kpn_B01 comprised 149 coding sequences (CDS) and 25 tRNAs, of which 34 CDS had known functions. Of course, vB_Kpn_B01 did not contain any known antibiotic-resistant or virulent genes. The pathological sections of the liver and lungs of mice showed that the inflammatory scores of the treatment group were lower than in the bacterial group. Phage vB_Kpn_B01 alleviated the inflammatory response in the organs of the infected mice, and the organ tissue bacterial load of the treatment group was significantly lower than that of the bacterial group. Therefore, vB_Kpn_B01 can inhibit the proliferation of K. pneumoniae 18 in vivo and can alleviate the inflammation of target organs caused by infectious bacteria, which preliminarily indicates that vB_Kpn_B01 has a certain therapeutic effect on laboratory-infected mice.

10.
Exp Ther Med ; 16(2): 511-516, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30116309

ABSTRACT

Palpation of the seventh cervical vertebra (C7) is important for the diagnosis and treatment of neck and chest conditions. However, the spinous process of C7 (C7-SP) displays an anatomical deviation among individuals. The present study aimed to clarify anatomic characteristics of C7-SP by using a three-dimensional (3D) computed tomographic (CT) reconstruction technique. A total of 245 subjects meeting the selection criteria were examined. After CT scanning, the images were reconstructed in 3D. All subjects were grouped according to their deviation of C7-SP: Deviating to the right (DR group), deviating to the left (DL group) and no deviation (ND group). Three distances and three angles were recorded on C7-SP. The vertical distances between the borders of the left and right transverse processes and the tip of the SP, were termed DLTS and DRTS, respectively. The length of the SP was also determined. The angle of the SP deviation was referred to as ∠α, the angle between the SP axis and the line crossing the tips of the transverse processes was referred to as âˆ ß and the angle between the vertebral body axis and the SP axis was referred to as ∠γ. Among the three groups, differences in ∠α and âˆ ß were statistically significant (P<0.05). Furthermore, the DLTS was significantly different between the DL and ND groups (P<0.05). In addition, a significant difference in the DRTS was identified between the DR and ND groups (P<0.05). 3D CT reconstruction was reliable for studying anatomic characteristics of C7-SP. Based on this, patients may be preliminarily grouped according to the deviation of their C7-SP and the measurement of the C7-SP may guide clinical diagnoses and treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...