Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Oncol ; 14: 1322090, 2024.
Article in English | MEDLINE | ID: mdl-38863621

ABSTRACT

Background: As one of the most prevalent primary lung tumors, non-small cell lung cancer (NSCLC) has garnered considerable research interest due to its high metastasis rates and poor prognosis outcomes. Across different cancer types, metabolic processes are required for tumors progression and growth, thus interfering with such processes in NSCLC may therapeutically viable for limiting/halting disease progression. Therefore, comprehending how metabolic processes contribute to growth and survival mechanisms in cancers, including NSCLC, may elucidate key functions underpinning tumor cell metabolism. However, no bibliometric analyses have been published in this field, therefore we address this knowledge gap here. Methods: Between 2013 and 2023 (December 28th), articles related to the NSCLC and metabolism (NSCLC-Met) field were retrieved from the Web of Science Core Collection (WoSCC). To fully dissect NSCLC-Met research directions and articles, we used the Bibliometrix package in R, VOSviewer and CiteSpace software to visually represent global trends and hotspots. Results: Between 2013 and 2023, 2,246 NSCLC-Met articles were retrieved, with a continuous upward trend and rapid development observed year on year. Cancers published the most articles, with Cancer Research recording the highest average citation numbers. Zhang Li from China was the most prolific author, but the highest number of authors came from the USA. China, USA, and Italy were the top three countries with the highest number of published articles, with close cooperation identified between countries. Recent hotspots and research directions were reflected by "lung adenocarcinoma", "immunotherapy", "nivolumab", "checkpoint inhibitors", "blockade", and "pembrolizumab", while "gut microbiome", "egfr" and "dose painting" were important topics for researchers. Conclusion: From our analyses, scientists can now explore new hotspots and research directions in the NSCLC-Met field. Further in-depth research in this field will undoubtedly provide more new insights on disease diagnostics, treatment, and prognostics.

2.
J Transl Med ; 21(1): 89, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747238

ABSTRACT

BACKGROUND: Albumin is the most abundant protein in serum and serves as a transporter of free fatty acids (FFA) in blood vessels. In type 2 diabetes mellitus (T2DM) patients, the reduced serum albumin level is a risk factor for T2DM development and progression, although this conclusion is controversial. Moreover, there is no study on the effects and mechanisms of albumin administration to relieve T2DM. We examined whether the administration of young and undamaged recombinant albumin can alleviate T2DM in mice. METHODS: The serum albumin levels and metabolic phenotypes including fasting blood glucose, glucose tolerance tests, and glucose-stimulated insulin secretion were studied in db/db mice or diet-induced obesity mice treated with saline or young, undamaged, and ultrapure rMSA. Apoptosis assays were performed at tissue and cell levels to determine the function of rMSA on islet ß cell protection. Metabolic flux and glucose uptake assays were employed to investigate metabolic changes in saline-treated or rMSA-treated mouse hepatocytes and compared their sensitivity to insulin treatments. RESULTS: In this study, treatment of T2DM mice with young, undamaged, and ultrapure recombinant mouse serum albumin (rMSA) increased their serum albumin levels, which resulted in a reversal of the disease including reduced fasting blood glucose levels, improved glucose tolerance, increased glucose-stimulated insulin secretion, and alleviated islet atrophy. At the cellular level, rMSA improved glucose uptake and glycolysis in hepatocytes. Mechanistically, rMSA reduced the binding between CAV1 and EGFR to increase EGFR activation leading to PI3K-AKT activation. Furthermore, rMSA extracellularly reduced the rate of fatty acid uptake by islet ß-cells, which relieved the accumulation of intracellular ceramide, endoplasmic reticulum stress, and apoptosis. This study provided the first clear demonstration that injections of rMSA can alleviate T2DM in mice. CONCLUSION: Our study demonstrates that increasing serum albumin levels can promote glucose homeostasis and protect islet ß cells, which alleviates T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Blood Glucose/metabolism , Insulin , Phosphatidylinositol 3-Kinases/metabolism , Glucose/metabolism , Mice, Obese , Glycolysis , Serum Albumin/metabolism , ErbB Receptors/metabolism , Insulin Resistance/physiology
3.
Oncogene ; 42(11): 808-824, 2023 03.
Article in English | MEDLINE | ID: mdl-36690678

ABSTRACT

NAD+ levels decline with age and in certain disease conditions. NAD+ precursors have been shown to stimulate NAD+ biosynthesis and ameliorate various age-associated diseases in mouse models. However, NAD+ metabolism is complicated in cancer and its role in triple-negative breast cancer (TNBC) remains elusive. Here, we show that NAD+ supplement suppresses tumor metastasis in a TNBC orthotopic patient-derived xenograft (PDX) model. Sirtuin1 lysine deacetylase (SIRT1) is required for the effects since SIRT1 knockdown blocks NAD+-suppressed tumor metastasis. Overexpression of SIRT1 effectively impairs the metastatic potential of TNBC. Importantly, the interaction between SIRT1 and p66Shc causes the deacetylation and functional inactivation of p66Shc, which inhibits epithelial-mesenchymal transition (EMT). Overall, we demonstrate that NAD+ supplementation executes its anti-tumor function via activating the SIRT1-p66Shc axis, which highlights the preventive and therapeutic potential of SIRT1 activators as effective interventions for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dietary Supplements , Disease Models, Animal , Epithelial-Mesenchymal Transition , NAD/metabolism , Neoplasm Metastasis , Sirtuin 1/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1 , Triple Negative Breast Neoplasms/pathology , Heterografts
SELECTION OF CITATIONS
SEARCH DETAIL
...