Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanophotonics ; 13(14): 2565-2573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836100

ABSTRACT

Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light-matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light-matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling.

2.
Phys Rev E ; 106(2): L022101, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109912

ABSTRACT

In this Letter we investigate the concept of quantum work and its measurability from the viewpoint of quantum measurement theory. Very often, quantum work and fluctuation theorems are discussed in the framework of projective two-point measurement (TPM) schemes. According to a well-known no-go theorem, there is no work observable which satisfies both (i) an average work condition and (ii) the TPM statistics for diagonal input states. Such projective measurements represent a restrictive class among all possible measurements. It is desirable, both from a theoretical and experimental point of view, to extend the scheme to the general case including suitably designed unsharp measurements. This shifts the focus to the question of what information about work and its fluctuations one is able to extract from such generalized measurements. We show that the no-go theorem no longer holds if the observables in a TPM scheme are jointly measurable for any intermediate unitary evolution. We explicitly construct a model with unsharp energy measurements and derive bounds for the visibility that ensure joint measurability. In such an unsharp scenario a single work measurement apparatus can be constructed that allows us to determine the correct average work and to obtain free energy differences with the help of a Jarzynski equality.

3.
Entropy (Basel) ; 24(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35626598

ABSTRACT

We investigate a composite quantum collision model with measurements on the memory part, which effectively probe the system. The framework allows us to adjust the measurement strength, thereby tuning the dynamical map of the system. For a two-qubit setup with a symmetric and informationally complete measurement on the memory, we study the divisibility of the resulting dynamics in dependence of the measurement strength. The measurements give rise to quantum trajectories of the system and we show that the average asymptotic purity depends on the specific form of the measurement. With the help of numerical simulations, we demonstrate that the different performance of the measurements is generic and holds for almost all interaction gates between the system and the memory in the composite collision model. The discrete model is then extended to a time-continuous limit.

4.
Entropy (Basel) ; 24(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35327864

ABSTRACT

We study non-Markovian dynamics of an open quantum system system interacting with a nonstationary squeezed bosonic reservoir. We derive exact and approximate descriptions for the open system dynamics. Focusing on the spin boson model, we compare exact dynamics with Redfield theory and a quantum optical master equation for both short and long time dynamics and in non-Markovian and Markov regimes. The squeezing of the bath results in asymptotic oscillations in the stationary state, which are captured faithfully by the Redfield master equation in the case of weak coupling. Furthermore, we find that the bath squeezing direction modifies the effective system-environment coupling strength and, thus, the strength of the dissipation.

5.
Phys Rev Lett ; 126(22): 220404, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34152163

ABSTRACT

The coherence of an individual quantum state can be meaningfully discussed only when referring to a preferred basis. This arbitrariness can, however, be lifted when considering sets of quantum states. Here we introduce the concept of set coherence for characterizing the coherence of a set of quantum systems in a basis-independent way. We construct measures for quantifying set coherence of sets of quantum states as well as quantum measurements. These measures feature an operational meaning in terms of discrimination games and capture precisely the advantage offered by a given set over incoherent ones. Along the way, we also connect the notion of set coherence to various resource-theoretic approaches recently developed for quantum systems.

6.
Phys Rev Lett ; 125(15): 150403, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095626

ABSTRACT

We solve two long-standing problems for stochastic descriptions of open quantum system dynamics. First, we find the classical stochastic processes corresponding to non-Markovian quantum state diffusion and non-Markovian quantum jumps in projective Hilbert space. Second, we show that the diffusive limit of non-Markovian quantum jumps can be taken on the projective Hilbert space in such a way that it coincides with non-Markovian quantum state diffusion. However, the very same limit taken on the Hilbert space leads to a completely new diffusive unraveling, which we call non-Markovian quantum diffusion. Further, we expand the applicability of non-Markovian quantum jumps and non-Markovian quantum diffusion by using a kernel smoothing technique allowing a significant simplification in their use. Lastly, we demonstrate the applicability of our results by studying a driven dissipative two level atom in a non-Markovian regime using all of the three methods.

7.
Phys Rev Lett ; 123(25): 250606, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922791

ABSTRACT

We address the question of verifying the quantumness of thermal machines. A Szilárd engine is truly quantum if its work output cannot be described by a local hidden state model, i.e., an objective local statistical ensemble. Quantumness in this scenario is revealed by a steering-type inequality which bounds the classically extractable work. A quantum Maxwell demon can violate that inequality by exploiting quantum correlations between the work medium and the thermal environment. While for a classical Szilárd engine an objective description of the medium always exists, any such description can be ruled out by a steering task in a truly quantum case.

8.
Phys Rev Lett ; 120(15): 150402, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29756890

ABSTRACT

We derive a family of Gaussian non-Markovian stochastic Schrödinger equations for the dynamics of open quantum systems. The different unravelings correspond to different choices of squeezed coherent states, reflecting different measurement schemes on the environment. Consequently, we are able to give a single shot measurement interpretation for the stochastic states and microscopic expressions for the noise correlations of the Gaussian process. By construction, the reduced dynamics of the open system does not depend on the squeezing parameters. They determine the non-Hermitian Gaussian correlation, a wide range of which are compatible with the Markov limit. We demonstrate the versatility of our results for quantum information tasks in the non-Markovian regime. In particular, by optimizing the squeezing parameters, we can tailor unravelings for improving entanglement bounds or for environment-assisted entanglement protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...