Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
J Surg Res ; 270: 214-220, 2022 02.
Article in English | MEDLINE | ID: mdl-34706298

ABSTRACT

BACKGROUND: Up to 30% of thyroid nodules are classified as indeterminate after fine needle aspiration biopsy. These indeterminate thyroid nodules (ITNs) require surgical pathology for definitive diagnosis. Molecular testing provides additional pre-operative cancer risk stratification but adds expense and invasive testing. The purpose of this study is to utilize a machine learning (ML) algorithm to predict malignancy of ITNs using data available from less invasive tests. MATERIALS AND METHODS: We conducted a retrospective study using medical records from one academic and one community center. Thyroid nodules with an indeterminate diagnosis on fine needle aspiration biopsy and completed diagnostic pathology were included. Linear, non-linear, and non-linear-ensemble ML methods were tested for accuracy when predicting malignancy using 10-fold cross-validation. Classifiers were evaluated using area under the receiver operating characteristics curve (AUROC). RESULTS: A total of 355 nodules met inclusion criteria. Of these, 171 (48.2%) were diagnosed with cancer. A Random Forest classifier performed the best, producing an accuracy of 79.1%, a sensitivity of 75.5%, specificity of 82.4%, positive predicative value of 80.3%, negative predictive value of 79.0%, and an AUROC of 0.859. CONCLUSIONS: ML methods accurately risk stratify ITNs using data gathered from existing, non-invasive, and inexpensive diagnostic tests. Applying an ML model with existing data can become a cost-effective alternative to molecular testing. Future studies will prospectively evaluate the performance of this ML approach when combined with expert judgment.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Biopsy, Fine-Needle , Humans , Machine Learning , Retrospective Studies , Sensitivity and Specificity , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Nodule/pathology
4.
J Surg Res ; 268: 562-569, 2021 12.
Article in English | MEDLINE | ID: mdl-34464894

ABSTRACT

BACKGROUND: Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data. MATERIALS AND METHODS: We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non-linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA. RESULTS: A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant. CONCLUSIONS: A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Adult , Biopsy, Fine-Needle , Humans , Machine Learning , Retrospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...