Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 100(5): 724-735, 2024.
Article in English | MEDLINE | ID: mdl-38442236

ABSTRACT

PURPOSE: Radiation-induced bystander effect (RIBE) frequently is seen as DNA damage in unirradiated bystander cells, but the repair processes initiated in response to that DNA damage are not well understood. RIBE-mediated formation of micronuclei (MN), a biomarker of persistent DNA damage, was previously observed in bystander normal fibroblast (AG01522) cells, but not in bystander human chondrosarcoma (HTB94) cells. The molecular mechanisms causing this disparity are not clear. Herein, we investigate the role of DNA repair in the bystander responses of the two cell lines. METHODS: Cells were irradiated with X-rays and immediately co-cultured with un-irradiated cells using a trans-well insert system in which they share the same medium. The activation of DNA damage response (DDR) proteins was detected by immunofluorescence staining or Western blotting. MN formation was examined by the cytokinesis-block MN assay, which is a robust method to detect persistent DNA damage. RESULTS: Immunofluorescent foci of γH2AX and 53BP1, biomarkers of DNA damage and repair, revealed a greater capacity for DNA repair in HTB94 cells than in AG01522 cells in both irradiated and bystander populations. Autophosphorylation of ATR at the threonine 1989 site was expressed at a greater level in HTB94 cells compared to AG01522 cells at the baseline and in response to hydroxyurea treatment or exposure to 1 Gy of X-rays. An inhibitor of ATR, but not of ATM, promoted MN formation in bystander HTB94 cells. In contrast, no effect of either inhibitor was observed in bystander AG01522 cells, indicating that ATR signaling might be a pivotal pathway to preventing the MN formation in bystander HTB94 cells. Supporting this idea, we found an ATR-dependent increase in the fractions of bystander HTB94 cells with pRPA2 S33 and RAD51 foci. A blocker of RAD51 facilitated MN formation in bystander HTB94 cells. CONCLUSION: Our results indicate that HTB94 cells were likely more efficient in DNA repair than AG01522 cells, specifically via ATR signaling, which inhibited the bystander signal-induced MN formation. This study highlights the significance of DNA repair efficiency in bystander cell responses.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Bystander Effect , Chondrosarcoma , DNA Repair , Rad51 Recombinase , Signal Transduction , Humans , Ataxia Telangiectasia Mutated Proteins/metabolism , Bystander Effect/radiation effects , Cell Line, Tumor , Chondrosarcoma/metabolism , Chondrosarcoma/radiotherapy , DNA Damage , Histones/metabolism , Rad51 Recombinase/metabolism
2.
Chem Res Toxicol ; 35(8): 1425-1432, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35862866

ABSTRACT

9,10-Phenanthrenequinone (9,10-PQ) is a toxicant in diesel exhaust particles and airborne particulate matter ≤2.5 µm in diameter. It is an efficient electron acceptor that readily reacts with dithiol compounds in vitro, resulting in the oxidation of thiol groups and concomitant generation of reactive oxygen species (ROS). However, it remains to be elucidated whether 9,10-PQ interacts with proximal protein dithiols. In the present study, we used thioredoxin 1 (Trx1) as a model of proteins with reactive proximal cysteines and examined whether it reacts with 9,10-PQ in cells and tissues, thereby affecting its catalytic activity and thiol status. Intratracheal injection of 9,10-PQ into mice resulted in protein oxidation and diminished Trx activity in the lungs. Using recombinant wild-type and C32S/C35S Trx1, we found that Cys32 and Cys35 selectively serve as electron donor sites for redox reactions with 9,10-PQ that lead to substantial inhibition of Trx activity. Addition of dithiothreitol restored the Trx activity inhibited by 9,10-PQ. Exposure of cultured cells to 9,10-PQ caused intracellular reactive oxygen species generation that led to protein oxidation, Trx1 dimerization, p38 phosphorylation, and apoptotic cell death. Overexpression of Trx1 blocked these 9,10-PQ-mediated events. These results suggest that the interaction of the reactive cysteines of Trx1 with 9,10-PQ causes oxidative stress, leading to disruption of redox homeostasis.


Subject(s)
Electrons , Thioredoxins , Animals , Cysteine/metabolism , Homeostasis , Mice , Oxidants , Oxidation-Reduction , Phenanthrenes , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism
3.
Biol Pharm Bull ; 45(6): 798-802, 2022.
Article in English | MEDLINE | ID: mdl-35650106

ABSTRACT

Redox-active quinones generate reactive oxygen species (ROS) through their redox cycling with electron donors. Hydrogen peroxide (H2O2) causes S-oxidation of proteins and is associated with activation of the redox signaling pathway and/or toxicity (Chem. Res. Toxicol., 30, 2017, Kumagai et al.). In the present study, we developed a convenient assay based on a combination of an enzyme-linked immunosorbent assay and a biotin-PEAC5-maleimide assay and used it to determine protein S-oxidation by ROS during redox cycling of 9,10-phenanthrenequinone (9,10-PQ) and pyrroloquinoline quinone (PQQ). S-Oxidation of proteins in a mouse liver supernatant was detected during reaction of 9,10-PQ or PQQ with electron donors such as dithiothreitol or reduced nicotinamide adenine dinucleotide phosphate (NADPH), whereas cellular protein oxidation was not observed in the absence of electron donors. These results suggest that the developed assay is useful for the detection of S-oxidation of proteins.


Subject(s)
Hydrogen Peroxide , Quinones , Animals , Mice , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
5.
J Toxicol Sci ; 45(6): 349-363, 2020.
Article in English | MEDLINE | ID: mdl-32493877

ABSTRACT

9,10-Phenanthrenequinone (9,10-PQ) is a polycyclic aromatic hydrocarbon quinone contaminated in diesel exhaust particles and particulate matter 2.5. It is an efficient electron acceptor that induces redox cycling with electron donors, resulting in excessive reactive oxygen species and oxidized protein production in cells. The current study examined whether 9,10-PQ could activate epidermal growth factor receptor (EGFR) signaling in A431 cells through S-oxidation of its negative regulators such as protein tyrosine phosphatase (PTP) 1B. 9,10-PQ oxidized recombinant human PTP1B at Cys215 and inhibited its catalytic activity, an effect that was blocked by catalase (CAT), whereas cis-9,10-dihydroxy-9,10-dihydrophenanthrene (DDP), which lacks redox cycling activity, had no effect on PTP1B activity. Exposure of A431 cells to 9,10-PQ, but not DDP, activated signaling through EGFR and its downstream extracellular signal-regulated kinase 1/2 (ERK1/2), coupled with a decrease of cellular PTP activity. Immunoprecipitation and UPLC-MSE revealed that PTP1B easily undergoes oxidation during exposure of A431 cells to 9,10-PQ. Pretreatment with polyethylene glycol conjugated with CAT (PEG-CAT) abolished 9,10-PQ-generated H2O2 production and significantly blocked the activation of EGFR-ERK1/2 signaling by 9,10-PQ, indicating the involvement of H2O2 in the activation because scavenging agents for hydroxyl radicals had no effect on the redox signal activation. These results suggest that such an air pollutant producing H2O2, activates EGFR-ERK1/2 signaling, presumably through the S-oxidation of PTPs such as PTP1B, and activation of the signal cascade may contribute, at least in part, to cellular responses in A431 cells.


Subject(s)
ErbB Receptors/metabolism , Phenanthrenes/adverse effects , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Signal Transduction/drug effects , Cells, Cultured , Humans , MAP Kinase Signaling System/drug effects , Oxidation-Reduction , Reactive Oxygen Species/metabolism
6.
Free Radic Biol Med ; 104: 118-128, 2017 03.
Article in English | MEDLINE | ID: mdl-28049024

ABSTRACT

The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na2S2 and Na2S4, blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine ß-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/genetics , Naphthoquinones/administration & dosage , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatography, Liquid , Cysteine/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , HSP90 Heat-Shock Proteins/genetics , Humans , Naphthoquinones/metabolism , Oxidation-Reduction , Signal Transduction/drug effects , Sulfhydryl Compounds/metabolism , Sulfur/metabolism , Tandem Mass Spectrometry
7.
J Toxicol Sci ; 40(3): 405-11, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25972200

ABSTRACT

Recently, we established a biotin-PEAC5-maleimide (BPM)-labeling assay, which can be used to determine the modification of electrophilic metals to proteins (Toyama et al., J. Toxicol. Sci., 38, 477-484, 2013). In the present study, we applied a BPM-labeling assay to detect protein S-modification by environmental organic electrophiles. After exposing A431 cells to 1,2-naphthoquinone (1,2-NQ) and 1,4-naphthoquinone (1,4-NQ), there was an inverse correlation between Western blot analysis with specific antibody against these electrophiles and that with BPM on the blot intensity to detect protein modification. Similar results were also observed using enzyme-linked immunosorbent assay (ELISA) with BPM. Modification of proteins in mouse liver cytosol by 5-hydroxy-1,4-NQ, 5,8-dihydroxy-1,4-NQ, 1,4-benzoquinone (1,4-BQ), tert-butyl-1,4-BQ, and N-acetyl-p-benzoquinoneimine, an electrophilic metabolite of acetaminophen, was detected using ELISA, but not non-electrophilic quinones or hydroquinone. We also tested whether ELISA could be used to detect electrophiles contained in the vapor phase of ambient air samples collected in the midtown area of Los Angeles. Taken together, the results suggested that the ELISA, developed in this study, can detect the existence of electrophilic quinones that covalently modify cellular proteins, resulting in modulation of redox-signal transduction pathways or cell damage.


Subject(s)
Biotin , Enzyme-Linked Immunosorbent Assay/methods , Maleimides , Proteins/chemistry , Quinones/analysis , Animals , Blotting, Western/methods , Cytosol/metabolism , Humans , Liver/metabolism , Metals/chemistry , Mice , Naphthoquinones , Oxidation-Reduction , Proteins/analysis , Signal Transduction , Tumor Cells, Cultured , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...