Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 55(19): 9898-9911, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27657461

ABSTRACT

Hydrolytic cleavage of 4-nitrophenyl phosphate (NPP), a commonly used DNA model substrate, was examined in the presence of series of lanthanide-substituted Keggin-type polyoxometalates (POMs) [Me2NH2]11[CeIII(PW11O39)2], [Me2NH2]10[CeIV(PW11O39)2] (abbreviated as (CeIV(PW11)2), and K4[EuPW11O39] by means of NMR and luminescence spectroscopies and density functional theory (DFT) calculations. Among the examined complexes, the Ce(IV)-substituted Keggin POM (CeIV(PW11)2) showed the highest reactivity, and its aqueous speciation was fully determined under different conditions of pD, temperature, concentration, and ionic strength by means of 31P and 31P diffusion-ordered NMR spectroscopy. The cleavage of the phosphoester bond of NPP in the presence of (CeIV(PW11)2) proceeded with an observed rate constant kobs = (5.31 ± 0.06) × 10-6 s-1 at pD 6.4 and 50 °C. The pD dependence of NPP hydrolysis exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 127 M-1) and catalytic rate constant (kc = 19.41 × 10-5 s-1) for the NPP-Ce(IV)-Keggin POM complex were calculated, and binding between CeIV(PW11)2 and the phosphate group of NPP was also evidenced by the change of the chemical shift of the 31P nucleus in NPP upon addition of the POM complex. DFT calculations revealed that binding of NPP to the parent catalyst CeIV(PW11)2 is thermodynamically unlikely. On the contrary, formation of complexes with the monomeric 1:1 species, CeIVPW11, is considered to be more favorable, and the most stable complex, [CeIVPW11(H2O)2(NPP-κO)2]7-, was found to involve two NPP ligands coordinated to the CeIVcenter of CeIVPW11 in the monodentate fashion. The formation of such species is considered to be responsible for the hydrolytic activity of CeIV(PW11)2 toward phosphomonoesters. On the basis of these findings a principle mechanism for the hydrolysis of NPP by the POM is proposed.

2.
Dalton Trans ; 45(30): 12174-80, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27406623

ABSTRACT

The catalytic hydrolysis of a phosphoester bond in the DNA-model substrate 4-nitrophenyl phosphate (NPP) promoted by Zr(iv)-substituted Wells-Dawson Na14[Zr4(P2W16O59)2(µ3-O)2(OH)2(H2O)4]·57H2O polyoxometalate (ZrWD 4 : 2) was followed by means of (1)H and (31)P NMR spectroscopy. The hydrolytic reaction proceeded with a rate constant of 8.44 (±0.36) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 300-fold rate enhancement in comparison with the spontaneous hydrolysis of NPP (kobs = 2.81 (±0.25) × 10(-7) s(-1)) under the same reaction conditions. The ZrWD 4 : 2 was also active towards hydrolysis of bis(4-nitrophenyl) phosphate (BNPP) and the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP). The pD dependence of kobs shows that the rate constants for NPP hydrolysis decrease significantly when the pD values of the reaction mixtures increase. The formation constant (Kf = 190 M(-1)) and catalytic rate constant (kc = 6.40 × 10(-4) s(-1)) for the NPP-ZrWD 4 : 2 complex, activation energy (Ea) of 110.15 ± 7.06 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 109.03 ± 6.86 kJ mol(-1), entropy of activation (ΔS(‡)) of 15.20 ± 2.49 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 104.32 ± 6.09 kJ mol(-1) at 37 °C were calculated from kinetic studies. The recyclability of ZrWD 4 : 2 was examined by adding an extra amount (5.0 mM) of NPP twice to a fully hydrolyzed mixture of 5.0 mM NPP and 1.0 mM ZrWD 4 : 2. The interaction between ZrWD 4 : 2 and the P-O bond of NPP was evidenced by a change in the (31)P chemical shift of the (31)P atom in NPP upon addition of ZrWD 4 : 2. Based on (31)P NMR experiments and the kinetic studies, a mechanism for NPP hydrolysis promoted by ZrWD 4 : 2 has been proposed.

3.
Inorg Chem ; 55(10): 4864-73, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27111398

ABSTRACT

A detailed reaction mechanism is proposed for the hydrolysis of the phosphoanhydride bonds in adenosine triphosphate (ATP) in the presence of the binuclear Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(µ-OH)(H2O)}2]·7H2O (ZrK 2:2). The full reaction mechanism of ATP hydrolysis in the presence of ZrK 2:2 at pD 6.4 was elucidated by a combination of (31)P, (31)P DOSY, and (31)P EXSY NMR spectroscopy, demonstrating the potential of these techniques for the analysis of complex reaction mixtures involving polyoxometalates (POMs). Two possible parallel reaction pathways were proposed on the basis of the observed reaction intermediates and final products. The 1D (31)P and (31)P DOSY spectra of a mixture of 20.0 mM ATP and 3.0 mM ZrK 2:2 at pD 6.4, measured immediately after sample preparation, evidenced the formation of two types of complexes, I1A and I1B, representing different binding modes between ATP and the Zr(IV)-substituted Keggin type polyoxometalate (ZrK). Analysis of the NMR data shows that at pD 6.4 and 50 °C ATP hydrolysis in the presence of ZrK proceeds in a stepwise fashion. During the course of the hydrolytic reaction various products, including adenosine diphosphate (ADP), adenosine monophosphate (AMP), pyrophosphate (PP), and phosphate (P), were detected. In addition, intermediate species representing the complexes ADP/ZrK (I2) and PP/ZrK (I5) were identified and the potential formation of two other intermediates, AMP/ZrK (I3) and P/ZrK (I4), was demonstrated. (31)P EXSY NMR spectra evidenced slow exchange between ATP and I1A, ADP and I2, and PP and I5, thus confirming the proposed reaction pathways.


Subject(s)
Adenosine Triphosphate/chemistry , Models, Chemical , Oxides/chemistry , Zirconium/chemistry , Adenosine Diphosphate/chemistry , Adenosine Monophosphate/chemistry , Diphosphates/chemistry , Hydrolysis , Kinetics , Magnetic Resonance Spectroscopy , Phosphorus Radioisotopes
4.
Dalton Trans ; 44(35): 15690-6, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26256057

ABSTRACT

The reactivity and solution behaviour of the binuclear Zr(IV)-substituted Keggin polyoxometalate (Et2NH2)8[{α-PW11O39Zr(µ-OH)(H2O)}2]·7H2O (ZrK 2 : 2) towards phosphoester bond hydrolysis of the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) was investigated at different reaction conditions (pD, temperature, concentration, and ionic strength). The hydrolysis of the phosphoester bond of HPNP, followed by means of (1)H NMR spectroscopy, proceeded with an observed rate constant, kobs = 11.5(±0.42) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 530-fold rate enhancement in comparison with the spontaneous hydrolysis of HPNP. (1)H and (31)P NMR spectra indicate that at these reaction conditions the only products of hydrolysis are p-nitrophenol and the corresponding cyclic phosphate ester. The pD dependence of kobs exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 455 M(-1)) and catalytic rate constant (kc = 42 × 10(-5) s(-1)) for the HPNP-ZrK 2 : 2 complex, activation energy (Ea) of 63.35 ± 1.82 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 60.60 ± 2.09 kJ mol(-1), entropy of activation (ΔS(‡)) of -133.70 ± 6.13 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 102.05 ± 0.13 kJ mol(-1) at 37 °C were calculated from kinetic experiments. Binding between ZrK 2 : 2 and the P-O bond of HPNP was evidenced by the change in the (31)P chemical shift and signal line-broadening of the (31)P atom in HPNP upon addition of ZrK 2 : 2. Based on (31)P NMR experiments and isotope effect studies, a mechanism for HPNP hydrolysis in the presence of ZrK 2 : 2 was proposed.


Subject(s)
Organophosphates/chemistry , Tungsten Compounds/chemistry , Zirconium/chemistry , Catalysis , Hydrolysis , Magnetic Resonance Spectroscopy , Models, Molecular , Organophosphates/metabolism , RNA/metabolism
5.
Chemistry ; 21(11): 4428-39, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25652658

ABSTRACT

A detailed reaction mechanism is proposed for the hydrolysis of the phosphoester bonds in the DNA model substrate bis(4-nitrophenyl) phosphate (BNPP) in the presence of the Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(µ-OH)(H2O)}2]⋅7 H2O (ZrK 2:2) at pD 6.4. Low-temperature (31)P DOSY spectra at pD 6.4 gave the first experimental evidence for the presence of ZrK 1:1 in fast equilibrium with ZrK 2:2 in purely aqueous solution. Moreover, theoretical calculations identified the ZrK 1:1 form as the potentially active species in solution. The reaction intermediates involved in the hydrolysis were identified by means of (1)H/(31)P NMR studies, including EXSY and DOSY NMR spectroscopy, which were supported by DFT calculations. This experimental/theoretical approach enabled the determination of the structures of four intermediate species in which the starting compound BNPP, nitrophenyl phosphate (NPP), or the end product phosphate (P) is coordinated to ZrK 1:1. In the proposed reaction mechanism, BNPP initially coordinates to ZrK 1:1 in a monodentate fashion, which results in hydrolysis of the first phosphoester bond in BNPP and formation of NPP. EXSY NMR studies showed that the bidentate complex between NPP and ZrK 1:1 is in equilibrium with monobound and free NPP. Subsequently, hydrolysis of NPP results in P, which is in equilibrium with its monobound form.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Tungsten Compounds/chemistry , Catalysis , Diffusion , Hydrolysis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...