Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(18): e2306901, 2024 May.
Article in English | MEDLINE | ID: mdl-38447155

ABSTRACT

Eggs and embryo manipulation is an important biotechnological challenge to enable positioning, entrapment, and selection of reproductive cells to advance into a new era of nature-like assisted reproductive technologies. Oviductin (OVGP1) is an abundant protein in the oviduct that binds reversibly to the zona pellucida, an extracellular matrix that surrounds eggs and embryos. Here, the study reports a new method coupling OVGP1 to magnetic nanoparticles (NP) forming a complex (NPOv). NPOv specifically surrounds eggs and embryos in a reversible manner. Eggs/embryos bound to NPOv can be moved or retained when subjected to a magnetic force, and interestingly only mature-competent eggs are attracted. This procedure is compatible with normal development following gametes function, in vitro fertilization, embryo development and resulting in the birth of healthy offspring. The results provide in vitro proof-of-concept that eggs and embryos can be precisely guided in the absence of physical contact by the use of magnets.


Subject(s)
Zona Pellucida , Zona Pellucida/metabolism , Animals , Female , Mice , Nanoparticles/chemistry , Embryo, Mammalian , Fertilization in Vitro/methods , Ovum , Embryonic Development/physiology , Reproductive Techniques, Assisted
2.
Theriogenology ; 219: 32-38, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382215

ABSTRACT

The semen of boar is characterized by ejaculation in well-differentiated fractions with specific concentration, composition, and volume. The 'sperm-rich fraction' (SRF), the most concentrated seminal fraction, is habitually collected in insemination centers to make artificial insemination (AI) doses. The absence of the other fractions in AI doses could alter the uterine reaction to AI and not trigger essential responses that could maximize fertility. Thus, there is an urge to ascertain the impact of different ejaculate fractions on the uterus after AI to optimize the semen doses. This work analyzed specific parameters related to fertility in pregnant artificially inseminated sows (n = 15) with ac-cumulative fractions of the semen of boars (n = 6): F1, composed of the sperm-rich fraction (SRF); F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF. Non-inseminated sows (n = 5) were included as control (C). The different types of seminal dose did not affect the number of ovulated follicles (CL; corpora lutea, p > 0.05) but did affect the embryo development (p < 0.05). The proportion of embryos in morula stages was significantly higher in AI-F1 sows (84.4%, p < 0.05). Morulas and blastocysts were balanced in AI-F2 or AI-F3 (p > 0.05). Independently of the type of seminal dose (F1, F2, or F3), we observed by immunohistochemistry that AI significantly increased uterine vascularization, although with some anatomical differences. The cranial region of the uterine horns was significantly more vascularized in AI-F1 or AI-F2 sows (26.7 ± 2.3 and 28.6 ± 2.0%, respectively), and AI-F3 showed significantly less vascularization at that point (17.8 ± 1.6%, p < 0.05). To summarize, the synergistic effect of all ejaculate fractions accelerates embryo development, at least during the preimplantation period, and increases the uterine reaction to AI in certain parts of the uterus.


Subject(s)
Semen , Spermatozoa , Pregnancy , Swine , Male , Animals , Female , Spermatozoa/physiology , Uterus/physiology , Insemination, Artificial/veterinary , Embryonic Development
3.
Sci Rep ; 13(1): 15258, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709904

ABSTRACT

Boar ejaculate is composed of sperm cells and seminal plasma (SP) and is emitted in different fractions (pre-sperm fraction; spermatic-rich fraction; intermediate fraction; post-spermatic fraction), with different composition of SP and volume, which could influence the sperm quality during seminal doses preparation, conservation, and interaction with the female reproductive tract. In artificial insemination (AI) centers, seminal doses are usually prepared with the spermatic-rich and intermediate fractions, but the inclusion of other ejaculate fractions, although controversial, is beginning to be applied. The objective was to evaluate the synergic effect of accumulative ejaculated fractions on sperm functionality during seminal doses preparation, throughout storage and after incubation with uterine fluid (UF). For this purpose, a total of 57 ejaculates were collected, and the following experimental groups were prepared (n = 19 per group): (F1) spermatic-rich fraction; (F2) F1 plus intermediate fraction; (F3) F2 plus post-spermatic fraction. Each group was stored for 5 days at ∼16 °C, and the following parameters were evaluated: sperm metabolism of pure and diluted semen (day 1), sperm quality parameters (days 1, 3, 5), thermal-resistance test (TRT) and incubation with uterine fluid (UF) (day 5). Sperm metabolic rates between accumulative ejaculate fractions from pure and diluted semen did not show differences. Also, sperm quality parameters were not affected by the ejaculate fraction during storage. However, sperm subjected to TRT showed similar results except for progressive motility, which was better in F2 and F3 than F1. When sperm were incubated with UF, the quality decreased in each group, but sperm from F2 and F3 were less affected than those from F1. In conclusion, the post-spermatic fraction can be included in seminal doses for their use in AI-centers, with functionality of sperm of different SP origins not being impaired throughout the storage, and responding better to thermal and UF stress. However, further research in AI-centers is necessary to test the sperm behaviour under presented conditions.


Subject(s)
Body Fluids , Uterine Diseases , Male , Female , Swine , Animals , Humans , Semen , Spermatozoa
4.
Animals (Basel) ; 12(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35883376

ABSTRACT

Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs.

5.
Vet Sci ; 9(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35737312

ABSTRACT

This study aimed to determine uterine blood flow indices by transabdominal Doppler ultrasound in sows (n = 18) under different conditions: (i) sows after estrus detection (day 0, D0); (ii) sows 2 h after artificial insemination (AI), performed 24 h after detection of estrus (day 1, D1); (iii) sows in early diestrus (day 5, D5). Moreover, three different types of seminal doses were used for AI depending on the ejaculate fraction included (F1: doses containing only the rich fraction of the ejaculate; F2: F1 + the transition fraction between rich and poor fractions; F3: F2 and poor fraction). The statistical analysis revealed significant differences in some indices regarding the period of analysis (D0, D1, and D5). Diastolic velocity and mean velocity showed lower values at D5 in comparison with D0 and D1 (p < 0.01). On the other hand, the pulsatility index and the relationship systolic velocity/diastolic velocity indicated higher values at D5 in comparison with D0 and D1 (p < 0.01). No differences were observed regarding the type of seminal dose used in any of the time points analyzed (p > 0.05). Neither insemination per se nor the type of ejaculate fraction used immediately modified the uterine vascularity, but some indices are affected by the stage of the estrus cycle (estrus vs. early diestrus).

6.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216252

ABSTRACT

Mosaicism is the most important limitation for one-step gene editing in embryos by CRISPR/Cas9 because cuts and repairs sometimes take place after the first DNA replication of the zygote. To try to minimize the risk of mosaicism, in this study a reversible DNA replication inhibitor was used after the release of CRISPR/Cas9 in the cell. There is no previous information on the use of aphidicolin in porcine embryos, so the reversible inhibition of DNA replication and the effect on embryo development of different concentrations of this drug was first evaluated. The effect of incubation with aphidicolin was tested with CRISPR/Cas9 at different concentrations and different delivery methodologies. As a result, the reversible inhibition of DNA replication was observed, and it was concentration dependent. An optimal concentration of 0.5 µM was established and used for subsequent experiments. Following the use of this drug with CRISPR/Cas9, a halving of mosaicism was observed together with a detrimental effect on embryo development. In conclusion, the use of reversible inhibition of DNA replication offers a way to reduce mosaicism. Nevertheless, due to the reduction in embryo development, it would be necessary to reach a balance for its use to be feasible.


Subject(s)
Aphidicolin/pharmacology , CRISPR-Cas Systems/drug effects , Cell Nucleus/drug effects , DNA Replication/drug effects , Embryo, Mammalian/drug effects , Eukaryota/drug effects , Animals , Animals, Genetically Modified , Embryonic Development/drug effects , Gene Editing/methods , Mosaicism/drug effects , Swine , Zygote/drug effects
7.
Biology (Basel) ; 11(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35205077

ABSTRACT

Boar ejaculate is released in several well-characterized fractions, differing in terms of sperm concentration, seminal plasma volume, and composition. However, the inclusion of the last part of the ejaculate for artificial insemination (AI) purposes is still under debate due to its controversial effects. Thus, there is a need to study the potential synergistic impact of the different ejaculate fractions. We aimed to evaluate the effect of accumulative ejaculate fractions on sperm conservation, AI performance, and offspring health. Ejaculates (n = 51) were collected and distributed as follows: F1: sperm-rich fraction; F2: sperm-rich + intermediate fractions; F3: sperm-rich + intermediate + poor fractions. Each group was diluted in a commercial extender, packaged in seminal doses (2000 × 106 sperm/60 mL), and stored at ~16 °C. On day 3 of conservation, sperm were analyzed and used for AI (n = 174). High sperm quality was observed after storage without a significant difference between the groups (p > 0.05). Moreover, no differences were obtained for AI performance (pregnancy and farrowing rates, and litter size; p > 0.05) and offspring health (growth and blood analysis; p > 0.05). Conclusively, the presence of all ejaculate fractions within the seminal doses does not impair the reproductive performance, reporting important economic savings according to the economic model included here.

8.
Front Cell Dev Biol ; 9: 673961, 2021.
Article in English | MEDLINE | ID: mdl-34336830

ABSTRACT

Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.

9.
Sci Rep ; 11(1): 12041, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103548

ABSTRACT

Recent evidence supports involvement of the acute phase protein haptoglobin in numerous events during mammalian reproduction. The present study represents an in-depth investigation of haptoglobin expression and secretion in the porcine oviduct and uterus, and assesses its effect on porcine in vitro embryo production. A systematic study was made of sows in different oestrous stages: late follicular, early luteal and late luteal stages. Relative haptoglobin mRNA abundance was quantified by RT-qPCR. In addition, expression of the protein was analysed by immunohistochemistry and the results were complemented by Western-blot and proteomic analyses of the oviductal and uterine fluids. In vitro porcine fertilization and embryo culture were carried out in the presence of haptoglobin. The results indicate that haptoglobin mRNA expression in the porcine oviduct and uterus is most abundant during the late luteal stage of the oestrous cycle. By means of Western blot and proteomic analyses haptoglobin presence was demonstrated in the oviduct epithelium and in the oviductal and uterine fluids in different stages of the oestrous cycle. The addition of haptoglobin during gamete co-incubation had no effect on sperm penetration, monospermy or efficiency rates; however, compared with the control group, blastocyst development was significantly improved when haptoglobin was present (haptoglobin: 64.50% vs. control: 37.83%; p < 0.05). In conclusion, the presence of haptoglobin in the oviduct and uterus of sows at different stages of the oestrous cycle suggests that it plays an important role in the reproduction process. The addition of haptoglobin during in vitro embryo production improved the blastocyst rates.


Subject(s)
Estrus , Haptoglobins/chemistry , Swine/physiology , Animals , Blastocyst/chemistry , Embryonic Development , Endometrium/metabolism , Estrous Cycle/genetics , Fallopian Tubes/metabolism , Female , Fertilization in Vitro , Haptoglobins/metabolism , In Vitro Techniques , Luteal Phase , Oviducts/metabolism , Proteomics/methods , RNA, Messenger/metabolism , Uterus/metabolism
10.
Biology (Basel) ; 10(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922110

ABSTRACT

Bottlenose dolphin (Tursiops truncatus) males follow many reproductive strategies to ensure their paternity. However, little is known about the sperm traits, including morphometric features, that contribute to their reproductive success. Our aim was to study dolphin sperm morphometry (a total of 13 parameters) in two adult males to evaluate (i) presumptive sperm subpopulations, (ii) the correlation of sperm morphometry with testosterone levels and (iii) the effect of refrigerated storage on the sperm morphometry. Sperm populations were classified into four principal components (PCs) based on morphometry (>94% of cumulative variance). The PCs clustered into two different sperm subpopulations, which differed between males. Furthermore, the levels of serum testosterone were positively correlated with the length of the midpiece but negatively correlated with head width and the principal piece, flagellum and total sperm lengths. Most of the sperm morphometric parameters changed during the storage period (day 1 vs. day 7), but only the principal piece length was affected by the storage temperature (5 °C vs. 15 °C). This is the first study to identify dolphin sperm subpopulations based on morphometry and the influence of serum testosterone and refrigeration on sperm morphometry.

11.
Int J Mol Sci ; 21(17)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842715

ABSTRACT

Ejaculated sperm are exposed to different environments before encountering the oocyte. However, how the sperm proteome changes during this transit remains unsolved. This study aimed to identify proteomic changes in boar sperm after incubation with male (seminal plasma, SP) and/or female (uterine fluid, UF; and oviductal fluid, OF) reproductive fluids. The following experimental groups were analyzed: (1) SP: sperm + 20% SP; 2) UF: sperm + 20% UF; 3) OF: sperm + 20% OF; 4) SP + UF: sperm + 20% SP + 20% UF; and (5) SP+OF: sperm + 20% SP + 20% OF. The proteome analysis, performed by HPLC-MS/MS, allowed the identification of 265 proteins. A total of 69 proteins were detected in the UF, SP, and SP + UF groups, and 102 proteins in the OF, SP, and SP + OF groups. Our results showed a higher number of proteins when sperm were incubated with only one fluid than when they were co-incubated with two fluids. Additionally, the number of sperm-interacting proteins from the UF group was lower than the OF group. In conclusion, the interaction of sperm with reproductive fluids alters its proteome. The description of sperm-interacting proteins in porcine species after co-incubation with male and/or female reproductive fluids may be useful to understand sperm transport, selection, capacitation, or fertilization phenomena.


Subject(s)
Body Fluids/physiology , Proteome/metabolism , Spermatozoa/metabolism , Animals , Female , Fertilization , Male , Semen/metabolism , Swine , Uterus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...