Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209248

ABSTRACT

Starting from indomethacin (IND), one of the most prescribed non-steroidal anti-inflammatory drugs (NSAIDs), new nitric oxide-releasing indomethacin derivatives with 1,3,4-oxadiazole-2-thiol scaffold (NO-IND-OXDs, 8a-p) have been developed as a safer and more efficient multitarget therapeutic strategy. The successful synthesis of designed compounds (intermediaries and finals) was proved by complete spectroscopic analyses. In order to study the in silico interaction of NO-IND-OXDs with cyclooxygenase isoenzymes, a molecular docking study, using AutoDock 4.2.6 software, was performed. Moreover, their biological characterization, based on in vitro assays, in terms of thermal denaturation of serum proteins, antioxidant effects and the NO releasing capacity, was also performed. Based on docking results, 8k, 8l and 8m proved to be the best interaction for the COX-2 (cyclooxygense-2) target site, with an improved docking score compared with celecoxib. Referring to the thermal denaturation of serum proteins and antioxidant effects, all the tested compounds were more active than IND and aspirin, used as references. In addition, the compounds 8c, 8h, 8i, 8m, 8n and 8o showed increased capacity to release NO, which means they are safer in terms of gastrointestinal side effects.


Subject(s)
Cyclooxygenase 2/chemistry , Indomethacin , Molecular Docking Simulation , Nitric Oxide/chemistry , Oxadiazoles , Humans , Indomethacin/chemical synthesis , Indomethacin/chemistry , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry
2.
Materials (Basel) ; 12(4)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30781782

ABSTRACT

In the past many research studies have focused on the thiazolidine-4-one scaffold, due to the important biological effects associated with its heterocycle. This scaffold is present in the structure of many synthetic compounds, which showed significant biological effects such as antimicrobial, antifungal, antioxidant, anti-inflammatory, analgesic, antidiabetic effects. It was also identified in natural compounds, such as actithiazic acid, isolated from Streptomyces strains. Starting from this scaffold new xanthine derivatives have been synthetized and evaluated for their antibacterial and antifungal effects. The antibacterial action was investigated against Gram positive (Staphyloccoccus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922) bacterial strains. The antifungal potential was investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). In order to improve the antimicrobial activity, the most active xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were included in a chitosan based polymeric matrix (CS). The developed polymeric systems (CS-XTDs) were characterized in terms of morphological (aspect, particle size), physic-chemical properties (swelling degree), antibacterial and antifungal activities, toxicity, and biological functions (bioactive compounds loading, entrapment efficiency). The presence of xanthine-thiazolidine-4-one derivatives into the chitosan matrix was confirmed using Fourier transform infrared (FT-IR) analysis. The size of developed polymeric systems, CS-XTDs, ranged between 614 µm and 855 µm, in a dry state. The XTDs were encapsulated into the chitosan matrix with very good loading efficiency, the highest entrapment efficiency being recorded for CS-6k, which ranged between 87.86 ± 1.25% and 93.91 ± 1.41%, depending of the concentration of 6k. The CS-XTDs systems showed an improved antimicrobial effect with respect to the corresponding XTDs. Good results were obtained for CS-6f, for which the effects on Staphylococcus aureus ATCC 25923 (21.2 ± 0.43 mm) and Sarcina lutea ATCC 9341 (25.1 ± 0.28 mm) were comparable with those of ciprofloxacin (25.1 ± 0.08 mm/25.0 ± 0.1 mm), which were used as the control. The CS-6f showed a notable antifungal effect, especially on Candida parapsilosis ATCC 22019 (18.4 ± 0.42 mm), the effect being comparable to those of nystatin (20.1 ± 0.09 mm), used as the control. Based on the obtained results these polymeric systems, consisting of thiazolidine-4-one derivatives loaded with chitosan microparticles, could have important applications in the food field as multifunctional (antimicrobial, antifungal, antioxidant) packaging materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...