Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13357, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587232

ABSTRACT

Training with long inter-session intervals, termed distributed training, has long been known to be superior to training with short intervals, termed massed training. In the present study we compared c-Fos expression after massed and distributed training protocols in the Morris water maze to outline possible differences in the learning-induced pattern of neural activation in the dorsal CA1 in the two training conditions. The results demonstrate that training and time lags between learning opportunities had an impact on the pattern of neuronal activity in the dorsal CA1. Mice trained with the distributed protocol showed sustained neuronal activity in the postero-distal component of the dorsal CA1. In parallel, in trained mice we found more active cells that tended to constitute spatially restricted clusters, whose degree increased with the increase in the time lags between learning trials. Moreover, activated cell assemblies demonstrated increased stability in their spatial organization after distributed as compared to massed training or control condition. Finally, using a machine learning algorithm we found that differences in the number of c-Fos positive cells and their location in the dorsal CA1 could be predictive of the training protocol used. These results suggest that the topographic organization and the spatial location of learning activated cell assemblies might be critical to promote the increased stability of the memory trace induced by distributed training.


Subject(s)
Algorithms , Hippocampus , Animals , Mice , Cell Cycle , Machine Learning , Molecular Weight , Proto-Oncogene Proteins c-fos
2.
PLoS Comput Biol ; 17(1): e1008114, 2021 01.
Article in English | MEDLINE | ID: mdl-33513130

ABSTRACT

Anatomically and biophysically detailed data-driven neuronal models have become widely used tools for understanding and predicting the behavior and function of neurons. Due to the increasing availability of experimental data from anatomical and electrophysiological measurements as well as the growing number of computational and software tools that enable accurate neuronal modeling, there are now a large number of different models of many cell types available in the literature. These models were usually built to capture a few important or interesting properties of the given neuron type, and it is often unknown how they would behave outside their original context. In addition, there is currently no simple way of quantitatively comparing different models regarding how closely they match specific experimental observations. This limits the evaluation, re-use and further development of the existing models. Further, the development of new models could also be significantly facilitated by the ability to rapidly test the behavior of model candidates against the relevant collection of experimental data. We address these problems for the representative case of the CA1 pyramidal cell of the rat hippocampus by developing an open-source Python test suite, which makes it possible to automatically and systematically test multiple properties of models by making quantitative comparisons between the models and electrophysiological data. The tests cover various aspects of somatic behavior, and signal propagation and integration in apical dendrites. To demonstrate the utility of our approach, we applied our tests to compare the behavior of several different rat hippocampal CA1 pyramidal cell models from the ModelDB database against electrophysiological data available in the literature, and evaluated how well these models match experimental observations in different domains. We also show how we employed the test suite to aid the development of models within the European Human Brain Project (HBP), and describe the integration of the tests into the validation framework developed in the HBP, with the aim of facilitating more reproducible and transparent model building in the neuroscience community.


Subject(s)
CA1 Region, Hippocampal , Electrophysiological Phenomena/physiology , Electrophysiology/methods , Models, Neurological , Software , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Computational Biology , Dendrites/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Rats
3.
Front Cell Neurosci ; 14: 173, 2020.
Article in English | MEDLINE | ID: mdl-32612513

ABSTRACT

GABAergic transmission regulates neuronal excitability, dendritic integration of synaptic signals and oscillatory activity, thought to be involved in high cognitive functions. By anchoring synaptic receptors just opposite to release sites, the scaffold protein gephyrin plays a key role in these tasks. In addition, by regulating GABAA receptor trafficking, gephyrin contributes to maintain, at the network level, an appropriate balance between Excitation (E) and Inhibition (I), crucial for information processing. An E/I imbalance leads to neuropsychiatric disorders such as epilepsy, schizophrenia and autism. In this article, we exploit a previously published computational method to fit spontaneous synaptic events, using a simplified model of the subcellular pathways involving gephyrin at inhibitory synapses. The model was used to analyze experimental data recorded under different conditions, with the main goal to gain insights on the possible consequences of gephyrin block on IPSCs. The same approach can be useful, in general, to analyze experiments designed to block a single protein. The results suggested possible ways to correlate the changes observed in the amplitude and time course of individual events recorded after different experimental protocols with the changes that may occur in the main subcellular pathways involved in gephyrin-dependent transsynaptic signaling.

4.
PLoS Comput Biol ; 14(9): e1006423, 2018 09.
Article in English | MEDLINE | ID: mdl-30222740

ABSTRACT

Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.


Subject(s)
Hippocampus/physiology , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Electrophysiology , Male , Models, Neurological , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
5.
Front Neuroinform ; 10: 23, 2016.
Article in English | MEDLINE | ID: mdl-27445784

ABSTRACT

Computational modeling of brain circuits requires the definition of many parameters that are difficult to determine from experimental findings. One way to help interpret these data is to fit them using a particular kinetic model. In this paper, we propose a general procedure to fit individual synaptic events recorded from voltage clamp experiments. Starting from any given model description (mod file) in the NEURON simulation environment, the procedure exploits user-defined constraints, dependencies, and rules for the parameters of the model to fit the time course of individual spontaneous synaptic events that are recorded experimentally. The procedure, implemented in NEURON, is currently available in ModelDB. A Python version is installed, and will be soon available for public use, as a standalone task in the Collaboratory Portal of the Human Brain Project. To illustrate the potential application of the procedure, we tested its use with various sets of experimental data on GABAergic synapses; gephyrin and gephyrin-dependent pathways were chosen as a suitable example of a kinetic model of synaptic transmission. For individual spontaneous inhibitory events in hippocampal pyramidal CA1 neurons, we found that gephyrin-dependent subcellular pathways may shape synaptic events at different levels, and can be correlated with cell- or event-specific activity history and/or pathological conditions.

6.
Int J Ophthalmol ; 8(5): 996-1002, 2015.
Article in English | MEDLINE | ID: mdl-26558216

ABSTRACT

AIM: To characterize the human retinal vessel arborisation in normal and amblyopic eyes using multifractal geometry and lacunarity parameters. METHODS: Multifractal analysis using a box counting algorithm was carried out for a set of 12 segmented and skeletonized human retinal images, corresponding to both normal (6 images) and amblyopia states of the retina (6 images). RESULTS: It was found that the microvascular geometry of the human retina network represents geometrical multifractals, characterized through subsets of regions having different scaling properties that are not evident in the fractal analysis. Multifractal analysis of the amblyopia images (segmented and skeletonized versions) show a higher average of the generalized dimensions (Dq ) for q=0, 1, 2 indicating a higher degree of the tree-dimensional complexity associated with the human retinal microvasculature network whereas images of healthy subjects show a lower value of generalized dimensions indicating normal complexity of biostructure. On the other hand, the lacunarity analysis of the amblyopia images (segmented and skeletonized versions) show a lower average of the lacunarity parameter Λ than the corresponding values for normal images (segmented and skeletonized versions). CONCLUSION: The multifractal and lacunarity analysis may be used as a non-invasive predictive complementary tool to distinguish amblyopic subjects from healthy subjects and hence this technique could be used for an early diagnosis of patients with amblyopia.

SELECTION OF CITATIONS
SEARCH DETAIL
...