Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 409(6821): 701-3, 2001 Feb 08.
Article in English | MEDLINE | ID: mdl-11217856

ABSTRACT

Helium isotope variations in igneous rocks are important for relating isotopic heterogeneity to convective mixing in the Earth's mantle. High 3He/4He ratios at many ocean islands, along with lower and relatively uniform values in mid-ocean-ridge basalts (MORBs), are thought to result from a well mixed upper-mantle source for MORB and a distinct deeper-mantle source for ocean island basalts. At finer scales, 3He/4He variations along mid-ocean ridges have been related to underlying mantle heterogeneity, but relationships between the scales of geochemical segmentation and mantle convection remain enigmatic. Here we present helium isotope data for MORB glasses recovered along approximately 5,800 km of the southeast Indian ridge, and develop an approach to quantitatively relate spatial variations in geochemical and geophysical parameters at the Earth's surface. A point-to-point correlation analysis reveals structure in the helium isotope data at length scales of approximately 150 and approximately 400 km that appears to be related to secondary convection in the underlying mantle.

2.
Science ; 269(5227): 1092-5, 1995 Aug 25.
Article in English | MEDLINE | ID: mdl-17755532

ABSTRACT

A survey of hydrothermal activity along the superfast-spreading (approximately 150 millimeters per year) East Pacific Rise shows that hydrothermal plumes overlay approximately 60 percent of the ridge crest between 13 degrees 50' and 18 degrees 40'S, a plume abundance nearly twice that known from any other rige portion of comparable length. Plumes were most abundant where the axial cross section is inflated and an axial magma chamber is present. Plumes with high ratios of volatile ((3)He, CH(4), and H(2)S) to nonvolatile (Mn and Fe) species marked where hydrothermal circulation has been perturbed by recent magmatic activity. The high proportion of volatile-rich plumes observed implies that such episodes are more frequent here than on slower spreading ridges.

3.
Science ; 262(5142): 2023-6, 1993 Dec 24.
Article in English | MEDLINE | ID: mdl-17794969

ABSTRACT

Helium-3/helium-4 ratios in submarine basalt glasses from the Galapagos Archipelago range up to 23 times the atmospheric ratio in the west and southwest. These results indicate the presence of a relatively undegassed mantle plume at the Galápagos hot spot and place Galápagos alongside Hawaii, Iceland, and Samoa as the only localities known to have such high helium-3/helium-4 ratios. Lower ratios across the rest of the Galápagos Archipelago reflect systematic variations in the degree of dilution of the plume by entrainment of depleted material from the asthenosphere. These spatial variations reveal the dynamics of the underlying mantle plume and its interaction with the nearby Galápagos Spreading Center.

4.
Science ; 214(4516): 13-8, 1981 Oct 02.
Article in English | MEDLINE | ID: mdl-17802550

ABSTRACT

An extensive plume of water enriched with helium-3 has been discovered in the deep Pacific Ocean at latitude 15 degrees S on the East Pacific Rise. In the core of the plume, at a depth of 2500 meters over the ridge crest, the helium-3/helium-4 ratio is 50 percent higher than the ratio in atmospheric helium, indicating a strong injection of mantle or primordial helium at the spreading center axis through local hydrothermal systems. The helium-3 plume is completely absent east of the rise, but it can be traced over 2000 kilometers to the west above a newly observed physical feature: a density discontinuity here caled the "ridge-crest front." The injected plume provides a unique deep-sea tracer with an asymmetric distribution which shows that the deep circulation across the rise is from east to west. The striking intensity and lateral extent of this helium-3 anomaly, compared to observations at known oceanic hydrohrmal sites, suggest that the largest hydrothermal fields in the ocean are yet to be discovered and that they will be found near 15 degrees S on the East Pacific Rise.

SELECTION OF CITATIONS
SEARCH DETAIL
...