Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Biotechnol J ; 19(4): 767-784, 2021 04.
Article in English | MEDLINE | ID: mdl-33112469

ABSTRACT

Nitrogen-fixing rhizobia and legumes have developed complex mutualistic mechanism that allows to convert atmospheric nitrogen into ammonia. Signalling by mitogen-activated protein kinases (MAPKs) seems to be involved in this symbiotic interaction. Previously, we reported that stress-induced MAPK (SIMK) shows predominantly nuclear localization in alfalfa root epidermal cells. Nevertheless, SIMK is activated and relocalized to the tips of growing root hairs during their development. SIMK kinase (SIMKK) is a well-known upstream activator of SIMK. Here, we characterized production parameters of transgenic alfalfa plants with genetically manipulated SIMK after infection with Sinorhizobium meliloti. SIMKK RNAi lines, causing strong downregulation of both SIMKK and SIMK, showed reduced root hair growth and lower capacity to form infection threads and nodules. In contrast, constitutive overexpression of GFP-tagged SIMK promoted root hair growth as well as infection thread and nodule clustering. Moreover, SIMKK and SIMK downregulation led to decrease, while overexpression of GFP-tagged SIMK led to increase of biomass in above-ground part of plants. These data suggest that genetic manipulations causing downregulation or overexpression of SIMK affect root hair, nodule and shoot formation patterns in alfalfa, and point to the new biotechnological potential of this MAPK.


Subject(s)
Medicago sativa , Plant Proteins , Biomass , Cluster Analysis , Medicago sativa/genetics , Mitogen-Activated Protein Kinase Kinases , Plant Proteins/genetics , Symbiosis/genetics
2.
Front Plant Sci ; 11: 592, 2020.
Article in English | MEDLINE | ID: mdl-32508859

ABSTRACT

For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.

3.
Front Plant Sci ; 11: 734, 2020.
Article in English | MEDLINE | ID: mdl-32582258

ABSTRACT

Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.

4.
Mol Plant ; 13(4): 612-633, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31935463

ABSTRACT

Stomatal ontogenesis, patterning, and function are hallmarks of environmental plant adaptation, especially to conditions limiting plant growth, such as elevated temperatures and reduced water availability. The specification and distribution of a stomatal cell lineage and its terminal differentiation into guard cells require a master regulatory protein phosphorylation cascade involving the YODA mitogen-activated protein kinase kinase kinase. YODA signaling results in the activation of MITOGEN-ACTIVATED PROTEIN KINASEs (MPK3 and MPK6), which regulate transcription factors, including SPEECHLESS (SPCH). Here, we report that acute heat stress affects the phosphorylation and deactivation of SPCH and modulates stomatal density. By using complementary molecular, genetic, biochemical, and cell biology approaches, we provide solid evidence that HEAT SHOCK PROTEINS 90 (HSP90s) play a crucial role in transducing heat-stress response through the YODA cascade. Genetic studies revealed that YODA and HSP90.1 are epistatic, and they likely function linearly in the same developmental pathway regulating stomata formation. HSP90s interact with YODA, affect its cellular polarization, and modulate the phosphorylation of downstream targets, such as MPK6 and SPCH, under both normal and heat-stress conditions. Thus, HSP90-mediated specification and differentiation of the stomatal cell lineage couples stomatal development to environmental cues, providing an adaptive heat stress response mechanism in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Response , MAP Kinase Kinase Kinases/metabolism , Plant Stomata/growth & development , Arabidopsis Proteins/genetics , Cell Differentiation , Cell Division , Cell Lineage , Cotyledon/cytology , Epigenesis, Genetic , Gene Expression Regulation, Plant , HSP90 Heat-Shock Proteins/genetics , MAP Kinase Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mutation , Phosphorylation , Plant Stomata/cytology , Plant Stomata/metabolism , Protein Binding , Signal Transduction
5.
Front Plant Sci ; 8: 1982, 2017.
Article in English | MEDLINE | ID: mdl-29209346

ABSTRACT

KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

6.
Mol Cell Proteomics ; 16(9): 1591-1609, 2017 09.
Article in English | MEDLINE | ID: mdl-28706004

ABSTRACT

Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.


Subject(s)
Actins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Cell Biology , Feedback, Physiological , Katanin/genetics , Microtubules/metabolism , Mutation/genetics , Proteomics/methods , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Ontology , Genes, Plant , Molecular Sequence Annotation , Protein Interaction Maps , Proteome/metabolism
7.
Front Plant Sci ; 8: 866, 2017.
Article in English | MEDLINE | ID: mdl-28596780

ABSTRACT

Katanin is the only microtubule severing protein identified in plants so far. Previous studies have documented its role in regulating cortical microtubule organization during cell growth and morphogenesis. Although, some cell division defects are reported in KATANIN mutants, it is not clear whether or how katanin activity may affect microtubule dynamics in interphase cells, as well as the progression of mitosis and cytokinesis and the orientation of cell division plane (CDP). For this reason, we characterized microtubule organization and dynamics in growing and dividing cotyledon cells of Arabidopsis ktn1-2 mutant devoid of KATANIN 1 activity. In interphase epidermal cells of ktn1-2 cortical microtubules exhibited aberrant and largely isotropic organization, reduced bundling and showed excessive branched microtubule formation. End-wise microtubule dynamics were not much affected, although a significantly slower rate of microtubule growth was measured in the ktn1-2 mutant where microtubule severing was completely abolished. KATANIN 1 depletion also brought about significant changes in preprophase microtubule band (PPB) organization and dynamics. In this case, many PPBs exhibited unisided organization and splayed appearance while in most cases they were broader than those of wild type cells. By recording PPB maturation, it was observed that PPBs in the mutant narrowed at a much slower pace compared to those in Col-0. The form of the mitotic spindle and the phragmoplast was not much affected in ktn1-2, however, the dynamics of both processes showed significant differences compared to wild type. In general, both mitosis and cytokinesis were considerably delayed in the mutant. Additionally, the mitotic spindle and the phragmoplast exhibited extensive rotational motions with the equatorial plane of the spindle being essentially uncoupled from the division plane set by the PPB. However, at the onset of its formation the phragmoplast undergoes rotational motion rectifying the expansion of the cell plate to match the original cell division plane. Conclusively, KATANIN 1 contributes to microtubule dynamics during interphase, regulates PPB formation and maturation and is involved in the positioning of the mitotic spindle and the phragmoplast.

8.
Front Plant Sci ; 8: 728, 2017.
Article in English | MEDLINE | ID: mdl-28529520

ABSTRACT

Cytoskeletal remodeling has a fundamental role, especially during transitional developmental stages when cells rapidly adopt new forms and roles, like gametogenesis, fertilization and concomitant embryogenesis and seed formation. KATANIN 1, a microtubule severing protein, fulfills a major regulatory mechanism of dynamic microtubule turnover in eukaryotes. Herein, we show that three well-established KATANIN 1 mutants, fra2, lue1 and ktn1-2 collectively display lower fertility and seed set in Arabidopsis. These lower fertility and seed set rates of fra2, lue1 and ktn1-2 mutants were correlated to abnormalities in the development of embryo proper and seed. Such phenotypes were rescued by transformation of mutants with functional pKTN1::GFP:KTN1 construct. This study significantly expands the already broad functional repertoire of KATANIN 1 and unravels its new role in embryo and seed development. Thus, KATANIN 1 significantly contributes to the fertility and proper embryo and seed formation in Arabidopsis.

9.
Sci Rep ; 6: 28306, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27324189

ABSTRACT

Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Mitogen-Activated Protein Kinases/genetics , Proteome/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Catalase/metabolism , Gene Knockout Techniques , Gene Ontology , Mutation, Missense , Peroxidase/metabolism , Phosphorylation , Plant Roots/enzymology , Plant Roots/genetics , Protein Binding , Protein Processing, Post-Translational , Proteomics , Receptors for Activated C Kinase/metabolism , Stress, Physiological
10.
Nat Protoc ; 10(8): 1234-47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26203821

ABSTRACT

Long-term fluorescence live-cell imaging experiments have long been limited by the effects of excitation-induced phototoxicity. The advent of light-sheet microscopy now allows users to overcome this limitation by restricting excitation to a narrow illumination plane. In addition, light-sheet imaging allows for high-speed image acquisition with uniform illumination of samples composed of multiple cell layers. The majority of studies conducted thus far have used custom-built platforms with specialized hardware and software, along with specific sample handling approaches. The first versatile commercially available light-sheet microscope, Lightsheet Z.1, offers a number of innovative solutions, but it requires specific strategies for sample handling during long-term imaging experiments. There are currently no standard procedures describing the preparation of plant specimens for imaging with the Lightsheet Z.1. Here we describe a detailed protocol to prepare plant specimens for light-sheet microscopy, in which Arabidopsis seeds or seedlings are placed in solid medium within glass capillaries or fluorinated ethylene propylene tubes. Preparation of plant material for imaging may be completed within one working day.


Subject(s)
Microscopy, Fluorescence , Plant Cells , Plant Development , Tissue Embedding/methods , Arabidopsis
11.
Front Plant Sci ; 6: 336, 2015.
Article in English | MEDLINE | ID: mdl-26029234

ABSTRACT

The aim of the present study is to rationalize acrylamide pendant Phos-Tag™ in-gel discrimination of phosphorylated and non-phosphorylated plant protein species with standard immunoblot analysis, and optimize sample preparation, efficient electrophoretic separation and transfer. We tested variants of the method including extraction buffers suitable for preservation of phosphorylated protein species in crude extracts from plants and we addressed the importance of the cation (Mn(2+) or Zn(2+)) used in the gel recipe for efficient transfer to PVDF membranes for further immunoblot analysis. We demonstrate the monitoring of Medicago sativa stress-induced mitogen activated protein kinase (SIMK) in stress-treated wild type plants and transgenic SIMKK RNAi line. We further show the hyperosmotically-induced phosphorylation of the previously uncharacterized HvMPK4 of barley. The method is validated using inducible phosphorylation of barley and wheat α-tubulin and of Arabidopsis MPK6. Acrylamide pendant Phos-Tag™offers a flexible tool for studying protein phosphorylation in crops and Arabidopsis circumventing radioactive labeling and the use of phosphorylation specific antibodies.

12.
Biotechnol Adv ; 33(6 Pt 2): 1024-42, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25819757

ABSTRACT

Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.


Subject(s)
Agrobacterium tumefaciens/metabolism , Gene Transfer Techniques , Plants/genetics , Transformation, Genetic , Agrobacterium tumefaciens/pathogenicity , Biotechnology , Plant Proteins/metabolism
13.
Biotechnol Adv ; 33(6 Pt 2): 1043-62, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25784147

ABSTRACT

The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants.


Subject(s)
Biotechnology/methods , Cytoskeleton/metabolism , Plants/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Host-Pathogen Interactions
14.
Methods Mol Biol ; 1171: 131-45, 2014.
Article in English | MEDLINE | ID: mdl-24908125

ABSTRACT

Mitogen-activated protein kinases (MAPK) are key regulatory elements in many processes. They are highly conserved throughout eukaryotes. In plants, MAPKs are involved in biotic and abiotic stress responses; they regulate cell division, cell growth, and also programmed cell death. In vivo visualization of MAPKs is crucial for understanding of their spatiotemporal organization. Cloning of MAPK-fluorescent protein fusions might present difficulties related to the preservation of protein-protein interactions essential for MAPK localization, interactions with upstream and downstream regulators, and finally substrate targeting. In this chapter we describe cloning of MAPKs in the flexible MultiSite Gateway(®) cloning system followed by easy and quick testing of binary vectors by transient assays in Arabidopsis thaliana and Nicotiana benthamiana.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Genetic Engineering/methods , Green Fluorescent Proteins/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Agrobacterium/genetics , Arabidopsis/genetics , Cetrimonium , Cetrimonium Compounds/chemistry , Cloning, Molecular , DNA Primers/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Escherichia coli/genetics , Genetic Vectors/genetics , Genome, Plant/genetics , Plant Leaves/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Nicotiana/genetics , Transformation, Genetic
15.
New Phytol ; 203(4): 1175-1193, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24923680

ABSTRACT

The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes. We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65-1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations. yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4). The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)-glutamic acid (E)-phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/enzymology , Cell Division , Indoleacetic Acids/metabolism , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Roots/embryology , Up-Regulation , Arabidopsis/drug effects , Arabidopsis/embryology , Cell Division/drug effects , Cytokinesis/drug effects , Fluorescent Antibody Technique , Indoleacetic Acids/pharmacology , Interphase , Meristem/cytology , Meristem/drug effects , Microtubules/drug effects , Microtubules/metabolism , Mitosis/drug effects , Mutation/genetics , Phenotype , Phosphorylation/drug effects , Plant Epidermis/cytology , Plant Roots/anatomy & histology , Plant Roots/cytology , Protein Binding/drug effects , Protein Transport/drug effects , Proteomics , Up-Regulation/drug effects
16.
J Exp Bot ; 65(9): 2335-50, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24648569

ABSTRACT

Dual-specificity mitogen-activated protein kinases kinases (MAPKKs) are the immediate upstream activators of MAPKs. They simultaneously phosphorylate the TXY motif within the activation loop of MAPKs, allowing them to interact with and regulate multiple substrates. Often, the activation of MAPKs triggers their nuclear translocation. However, the spatiotemporal dynamics and the physiological consequences of the activation of MAPKs, particularly in plants, are still poorly understood. Here, we studied the activation and localization of the Medicago sativa stress-induced MAPKK (SIMKK)-SIMK module after salt stress. In the inactive state, SIMKK and SIMK co-localized in the cytoplasm and in the nucleus. Upon salt stress, however, a substantial part of the nuclear pool of both SIMKK and SIMK relocated to cytoplasmic compartments. The course of nucleocytoplasmic shuttling of SIMK correlated temporally with the dual phosphorylation of the pTEpY motif. SIMKK function was further studied in Arabidopsis plants overexpressing SIMKK-yellow fluorescent protein (YFP) fusions. SIMKK-YFP plants showed enhanced activation of Arabidopsis MPK3 and MPK6 kinases upon salt treatment and exhibited high sensitivity against salt stress at the seedling stage, although they were salt insensitive during seed germination. Proteomic analysis of SIMKK-YFP overexpressors indicated the differential regulation of proteins directly or indirectly involved in salt stress responses. These proteins included catalase, peroxiredoxin, glutathione S-transferase, nucleoside diphosphate kinase 1, endoplasmic reticulum luminal-binding protein 2, and finally plasma membrane aquaporins. In conclusion, Arabidopsis seedlings overexpressing SIMKK-YFP exhibited higher salt sensitivity consistent with their proteome composition and with the presumptive MPK3/MPK6 hijacking of the salt response pathway.


Subject(s)
Arabidopsis/metabolism , Medicago sativa/enzymology , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Enzyme Activation , Gene Expression , Medicago sativa/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Protein Transport , Salts/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...