Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(5): 7158-7170, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439404

ABSTRACT

We address the engineering of Fano resonances and metasurfaces, by placing it in the general context of open non-Hermitian systems composed of coupled antenna-type resonators. We show that eigenfrequency solutions obtained for a particular case of scattering matrix are general and valid for arbitrary antenna radiative rates, thanks to an appropriate transformation of parametric space by simple linear expansion and rotation. We provide evidence that Parity-Time symmetry phase transition path and bound states in continuum (BIC) path represent the natural axis of universal scattering matrix solutions in this parametric coupling-detuning plane and determine the main characteristics of Fano resonance. Specifically, we demonstrate the control of asymmetry and sharpness of Fano resonance through navigation between BIC and PT-symmetric phase transition exceptional point. In particular, we demonstrate a fully symmetric Fano resonance in a system of two coupled bright and dark mode resonators. This result goes beyond current wisdom on this topic and demonstrates the universality of scattering matrix eigenfrequency solutions highlighted in our study. The validity of our approach is corroborated through comparison with experimental and full 3D numerical simulations results published in the literature making it thus possible to grasp a large body of experimental work carried out in this field. The detrimental impact of absorption losses on the contrast of the Fano resonance, which must be two orders of magnitude lower than the radiative losses, is also evidenced.

2.
ACS Appl Mater Interfaces ; 12(18): 21114-21119, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32310629

ABSTRACT

Near-field imaging of the propagation of a diffraction-free Bessel-type beam in a guided wave configuration generated by means of a metasurface-based axicon lens integrated on a silicon waveguide is reported. The operation of the axicon lens with a footprint as small as 11 µm2 is based on local engineering of the effective index of the silicon waveguide with plasmonic nanoresonators. This generic approach, which can be adapted to different types of planar lightwave circuit platforms, offers the possibility to design nano-engineered optical devices based on the use of plasmonic resonators to control light at the nanoscale.

3.
Opt Lett ; 43(16): 3818-3821, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106891

ABSTRACT

The engineering of metal-insulator-metal metasurfaces (MSs) displaying sharp spectral features based on Fano-type interference between a symmetric bright mode and an antisymmetric dark mode is reported. The proposed mechanism for direct excitation of antisymmetric mode avoids the necessity of mode hybridization through near-field coupling. Modeling and experimental results bring evidence that such MSs operating in the microwave or terahertz domains provide greater flexibility for Fano resonance engineering and provide strong enhancement of the spectral selectivity factor. It is shown that the occurring Fano resonance interference is related to the broken eigenmode orthogonality in open systems and is independent of hybridization mechanism.

4.
Sci Rep ; 7(1): 13299, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038509

ABSTRACT

We consider the optimization problem of least energy-cost path in open systems that are described by non-Hermitian Hamiltonians. We apply it to find the optimal gain-loss profile for a non-uniform PT-symmetric coupler performing a binary transfer function. We bring evidence that the gain-loss profile fulfilling this requirement corresponds to a non-conventional situation where light intensity is conserved at every point along the PT-symmetric system. Besides, we find that the optimal profile corresponds to a practically important case of optical switching operation achieved with minimal amount of aggregate amplification level. We show that switching architectures using such type of gain-loss profiles are much more advantageous than conventional uniform PT-symmetric couplers in terms of gain and energy. Furthermore, this type of optimal profile turns out to be robust against fabrication imperfections. This opens new prospects for functional applications of PT-symmetric devices in photonics.

5.
ACS Nano ; 11(5): 4599-4605, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28463497

ABSTRACT

In this article we address the nanoscale engineering of the effective index of silicon on insulator waveguides by using plasmonic metasurface resonances to realize a graded index lens. We report the design, implementation, and experimental demonstration of this plasmonic metasurface-based graded index lens integrated on a silicon waveguide for operation in the near-infrared domain. The 2D-graded index lens consists of an array of gold cut wires fabricated on the top of a silicon waveguide. These gold cut wires modify locally the effective index of the silicon waveguide and allow the realization of this gradient lens. The reported solution represents a promising alternative to the bulky or multilayered metamaterials approach in the near IR domain. This enabling technology may have found its place in silicon photonic applications by exploiting the plasmonic resonances to control the light at nanoscale.

6.
Opt Lett ; 41(2): 412-5, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26766727

ABSTRACT

We provide evidence for the mechanism of direct dark mode excitation in a metasurface composed of bi-layered Z-shaped enantiomeric meta-atoms. The electromagnetic behavior of the structure is investigated through both numerical simulations and experimental measurements in the microwave domain. We demonstrate direct field coupling excitation of second higher order electric mode under normal incidence based only on symmetry matching conditions. The proposed approach provides a better flexibility in engineering dark mode resonances that do not rely on hybridization mechanism and presents important advantages for multi-spectral sensor applications.

7.
Opt Lett ; 40(7): 1571-4, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831387

ABSTRACT

The idea of utilizing the second-order plasmon resonance of gold nanorod π-dimers for plasmon rulers is introduced. We report on a qualitatively different dependence of the plasmon resonance shift on the interparticle distance for the first- and second-order longitudinal modes of the nanorods, extending the working range of plasmon rulers up to the distance values of approximately 400 nm.

8.
Opt Lett ; 38(20): 4208-11, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321961

ABSTRACT

Using numerical modeling, it is shown that chains of dielectric spheres and cylinders act as polarizers. The mechanism is based on gradual filtering of periodically focused modes with a certain polarization propagating with minimal losses due to Brewster angles conditions, whereas orthogonally polarized modes are strongly attenuated. It is shown that chains of cylinders filter linearly polarized beams, whereas chains of spheres filter radially polarized beams. In the geometrical optics limit, we show that in a range of sphere refractive indices 1.68-1.80 a degree of radial polarization in excess of 0.9 can be obtained in 10-sphere-long chains.

9.
Opt Express ; 21(18): 21651-68, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24104039

ABSTRACT

We analyze the operation of 2 × 2 switches composed of two coupled waveguides operating on the basis of parity-time (PT) symmetry: the two waveguides differ through their gain or loss factors and not through the real part of their propagation constant. Plasmonics constitutes a preferred application for such systems, since combination of plasmonics with gain is increasingly mastered. The exact PT-symmetric case (gain and loss of identical absolute value) is considered as well as various unbalanced cases, thanks to their respective switching diagrams. Although perfect signal-conserving cross and bar states are not always possible in the latter cases, they can nevertheless form the basis of very good switches if precise design rules are followed. We draw from the analysis what the optimal configurations are in terms of, e.g., guide gain or gain-length product to operate the switch. Many analytical or semi-analytical results are pointed out. A practical example based on the coupling of a long-range surface-plasmon-polariton and a polymeric waveguide having gain is provided.

10.
Opt Express ; 19(19): 18004-19, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21935166

ABSTRACT

The so-called PT symmetric devices, which feature ε((-x)) = ε((x))* associated with parity-time symmetry, incorporate both gain and loss and can present a singular eigenvalue behaviour around a critical transition point. The scheme, typically based on co-directional coupled waveguides, is here transposed to the case of variable gain on one arm with fixed losses on the other arm. In this configuration, the scheme exploits the full potential of plasmonics by making a beneficial use of their losses to attain a critical regime that makes switching possible with much lowered gain excursions. Practical implementations are discussed based on existing attempts to elaborate coupled waveguide in plasmonics, and based also on the recently proposed hybrid plasmonics waveguide structure with a small low-index gap, the PIROW (Plasmonic Inverse-Rib Optical Waveguide).

11.
Opt Lett ; 36(7): 1074-6, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21478987

ABSTRACT

The optical near-field technique is applied to provide a direct experimental observation of the refracted beam propagation inside a photonic crystal structure displaying a superprism effect. The obtained results show a 35° light beam angle deviation for a wavelength variation from 1500 to 1600 nm. The experimentally determined beam divergence is in good agreement with modeling predictions and previously performed transmittance experiments. A marked self-collimation propagation over a broad 20 nm wide spectral range centered at λ=1550 nm is experimentally demonstrated. The developed technique opens promising perspectives for the invisibility cloaking structures investigation.

12.
Opt Express ; 19(2): 1246-59, 2011 Jan 17.
Article in English | MEDLINE | ID: mdl-21263666

ABSTRACT

The use of artificial dispersion by material structuring is investigated for the design of highly wavelength selective directional couplers. Systems of two highly asymmetric coupled waveguides are considered with the artificial dispersion created by distributed Bragg gratings (BGs) operated near photonic band gap. It is shown that even in the case of an asymmetrical directional coupler with initially phase matched waveguides, the achievement of high wavelength selectivity requires the fulfillment of a threshold condition on the BG coupling coefficient. The presence of BG(s) leads in turn to the appearance of two transmission bands instead of one. The wavelength selectivity associated to one of these bands is much higher than that obtained in the absence of BG(s). It is also shown that under particular circumstances, dual band operation can be achieved without threshold condition. The directional coupler then exhibits two transmission bands with approximately the same width and a very low level of insertion losses. Such a dual band transmission coupler is expected to offer new functionalities for wavelength demultiplexing applications.


Subject(s)
Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
13.
Opt Express ; 18(22): 23183-95, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-21164659

ABSTRACT

This paper addresses the design of narrow band transmission co-directional couplers suitable for wavelength division multiplexing applications. The originality of the proposed asymmetric two-waveguide configuration stems from the use of Bragg gratings operated near band gap to simultaneously achieve high wavelength dispersion and selectivity as well as co-directional phase matching between guides which would be mismatched otherwise. Our theoretical analysis reveals the existence of a minimum Bragg grating coupling strength for co-directional phase matching. The threshold condition is analytically determined, and a coupled mode theory (CMT) four-wave model is successfully applied to describe the behavior of the investigated device. A numerical validation of CMT results is reported in the case of slab waveguides with Bragg grating assisted coupling. The proposed design is shown to be compatible with existing micro-nano-fabrication technology.

14.
Opt Express ; 16(22): 17209-14, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18958001

ABSTRACT

This paper addresses the problem of a photonic crystal (PhC) superprism design for coarse wavelength division multiplexing (CWDM) application. The proposed solution consists in using a PhC structure that presents an efficient balance between the wavelength dispersion and the beam divergence. It is shown that a bidimensional rhombohedral lattice PhC displays both a high beam collimation and an important wavelength dependant angular dispersion. We report the design, fabrication and experimental demonstration of a 4-channel optical demultiplexer with a spectral spacing of 25 nm and a cross-talk level of better than -16 dB using a 2800 microm(2) PhC region. The minimum of insertion losses of the demultiplexer is less than 2 dB. The obtained results present an important milestone toward PhC devices for practical applications.

15.
Opt Express ; 14(5): 2003-13, 2006 Mar 06.
Article in English | MEDLINE | ID: mdl-19503531

ABSTRACT

Experimental results on wavelength-dependent angular dispersion in InGaAsP triangular lattice planar photonic crystals are presented. An abrupt variation of the angular dispersion is observed for TM-polarized waves whose frequencies are comprised between those of the fourth and sixth allowed bands. According to the crystal period, the measured angle of refraction is found to either decrease or increase by 30 degrees within a wavelength range smaller than 30 nm. Experimental results are reproduced well from 2D finite difference time domain calculations. The observed phenomena are interpreted from the coupling of the incident light to different modes of the photonic crystal that travel with different group velocities and propagate in different directions within the crystal. Mode dispersion curves and mode patterns are calculated along with isofrequency curves to support this explanation. The observed discontinuous wavelength super-refraction opens a new approach to the application of superprisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...