Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 11423, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651456

ABSTRACT

Mesenchymal stem cell (MSC)-based therapy is being increasingly considered a powerful opportunity for several disorders based on MSC immunoregulatory properties. Nonetheless, MSC are versatile and plastic cells that require an efficient control of their features and functions for their optimal use in clinic. Recently, we have shown that PPARß/δ is pivotal for MSC immunoregulatory and therapeutic functions. However, the role of PPARß/δ on MSC metabolic activity and the relevance of PPARß/δ metabolic control on MSC immunosuppressive properties have never been addressed. Here, we demonstrate that PPARß/δ deficiency forces MSC metabolic adaptation increasing their glycolytic activity required for their immunoregulatory functions on Th1 and Th17 cells. Additionally, we show that the inhibition of the mitochondrial production of ATP in MSC expressing PPARß/δ, promotes their metabolic switch towards aerobic glycolysis to stably enhance their immunosuppressive capacities significantly. Altogether, these data demonstrate that PPARß/δ governs the immunoregulatory potential of MSC by dictating their metabolic reprogramming and pave the way for enhancing MSC immunoregulatory properties and counteracting their versatility.


Subject(s)
Mesenchymal Stem Cells/metabolism , PPAR-beta/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Gene Silencing , Glycolysis , Immunosuppression Therapy , Mice , Oligomycins/chemistry , Th1 Cells/cytology , Th17 Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL